Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38256743

ABSTRACT

Mesembryanthemum crystallinum L. is an obligatory halophyte species showing optimum growth at elevated soil salinity levels, but the ionic requirements for growth stimulation are not known. The aim of the present study was to compare the effects of sodium, potassium and calcium in the form of chloride and nitrate salts on the growth, physiological performance, ion accumulation and mineral nutrition of M. crystallinum plants in controlled conditions. In a paradoxical way, while sodium and potassium had comparable stimulative effect on plant growth, the effect of calcium was strongly negative even at a relatively low concentration, eventually leading to plant death. Moreover, the effect of Ca nitrate was less negative in comparison to that of Ca chloride, but K in the form of nitrate had some negative effects. There were three components of the stimulation of biomass accumulation by NaCl and KCl salinity in M. crsytallinum: the increase in tissue water content, increase in ion accumulation, and growth activation. As optimum growth was in a salinity range from 20 to 100 mM, the increase in the dry biomass of plants at a moderate (200 mM) and high (400 mM) salinity in comparison to control plants was mostly due to ion accumulation. Among physiological indicators, changes in leaf chlorophyll concentration appeared relatively late, but the chlorophyll a fluorescence parameter, Performance Index Total, was the most sensitive to the effect of salts. In conclusion, both sodium and potassium in the form of chloride salts are efficient in promoting the optimum growth of M. crystallinum plants. However, mechanisms leading to the negative effect of calcium on plants need to be assessed further.

2.
Life (Basel) ; 13(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511979

ABSTRACT

Plants with high biomass adapted to conditions of increased moisture and with significant salt tolerance appear to be particularly attractive candidates for phytoremediation studies. The aim of the present study was to examine the tolerance of Rumex hydrolapathum plants to freshwater, saltwater inundation, and soil contaminated with heavy metals, as well as its metal accumulation potential in controlled conditions. Six separate vegetation container experiments in controlled conditions were performed with R. hydrolapathum plants to study the effects of soil moisture, waterlogging with NaCl, soil Cd, soil Cr, soil Ni, and soil Pb in the form of a nitrate or acetate. Optimum plant growth occurred in waterlogged soil conditions. As the concentration of NaCl used for waterlogging increased, the mass of living leaves decreased, but that of dry leaves increased. As a result, the total biomass of leaves did not significantly change. R. hydrolapathum plants were extremely tolerant to Cd and Pb, moderately tolerant to Ni, and relatively sensitive to Cr. The plants had high capacity for metal accumulation in older and senescent leaves, especially for Na+, K+, Cd, and Ni. R. hydrolapathum plants can tolerate soil waterlogging with seawater-level salinity, which, together with the metal tolerance and potential for metal accumulation in leaves, make them excellently suited for use in a variety of wastewater treatment systems, including constructed wetlands.

3.
Plants (Basel) ; 12(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37111863

ABSTRACT

Several factors are involved in the incidence of blossom-end rot (BER) in tomato fruit, but the main one is insufficient Ca uptake and transport through the plant, resulting in Ca deficiency in the fruit. Sprays of Ca-containing products are considered to be a possible measure to overcome the local Ca deficiency in tomato fruit. Therefore, the main objective was to evaluate the effectiveness of additional Ca supply to tomato fruits for increasing Ca content and reducing fruit damage. Sprays of five different commercial preparations containing (Brexil Duo, Calmax Zero N, Ca(NO3)2, CaCl2) or promoting (Greenstim) Ca uptake were tested using BER-sensitive large-fruit variety 'Beorange'. The experiment was conducted in the commercial greenhouse 'Getlini EKO', Latvia, during the autumn-spring season of 2020/2021 under controlled conditions, eliminating the adverse impact of external factors. The results revealed that none of the preparations were effective in increasing Ca content, preventing BER, and did not promote the tomato yield. As good agricultural practices were followed in the greenhouse to manage BER, we concluded that a non-marketable yield of around 15% should be expected for 'Beorange' when grown under artificial light, possibly due to the impact of abiotic stresses and genetically determined susceptibility.

4.
Plants (Basel) ; 12(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36840293

ABSTRACT

The present study was carried out to evaluate the leaf nutrient status of commercially grown strawberries in Latvia during 2014-2022. The results of N, P, K, Ca, Mg, S, Fe, Mn, Zn, Cu, Mo and B in 200 strawberry leaf samples from different strawberry-producing farms were analysed over three periods: 2014-2016, 2017-2019, and 2020-2022. According to leaf analyses, plant fertilization was only partly well managed by the growers. During the research period, strawberries in Latvia were generally sufficiently supplied with N, P, K, Mg, Fe, Mn, Mo, and B, while the level of Ca, S, Zn, and Cu was considered low. The deficiency of these nutrients was characteristic for more than 50% of the samples. Since Ca, S, Zn, and Cu are essential for berry formation and quality and contribute to stress resistance; their deficiency could be one of the limiting factors for strawberry yield. The significant positive correlations found between nutrients, including deficient ones, confirmed their close relationship in the uptake process and the importance of sufficient supply. The results clearly indicated that fertilization could currently be an issue that limits the strawberry harvest in Latvia, and adequate provisions of Ca, S, Zn, and B should be the main focus.

5.
Plants (Basel) ; 12(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36771613

ABSTRACT

In Latvia, cloudberries are considered a valuable delicacy and have aroused interest in the possibility of commercial cultivation, as currently, they are collected only in the wild. A complex study was carried out to provide insight into the growth conditions of wild cloudberry in Latvia. The knowledge gained would provide a basis for the development of cloudberry cultivation technologies in the hemiboreal zone. Habitat characteristics, composition of surrounding vegetation, and plant mineral nutrition status were investigated in 18 study sites. Overall, the species composition of cloudberry study sites corresponded to two plant community classes: Cl. Vaccinio-Piceetea and Cl. Oxycocco-Sphagnetea. The most common species were Sphagnum magellanicum, Vaccinium myrtillus, and Oxycoccus palustris. The results clearly indicated acidic peat soils with high organic matter content and low degree of decomposition as being most suitable for cloudberry cultivation. High nutrient uptake capacity was found for wild cloudberry growing in nutrient-poor environments, as most of the leaf nutrients corresponded to the optimal levels determined for different cultivated berries. However, balanced fertilization to ensure successful plant vegetative and root growth would be recommended. The first results on wild cloudberry in Latvia indicated that optimization of P, S, B, and Mo should be the main focus.

6.
Life (Basel) ; 12(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36556324

ABSTRACT

The aim of the present study was to evaluate tolerance to salinity and different heavy metals as well as the phytoextraction potential of Ranunculus sceleratus plants from a brackish coastal sandy beach habitat. Four separate experiments were performed with R. sceleratus plants in controlled conditions: (1) the effect of NaCl gradient on growth and ion accumulation, (2) the effect of different Na+ and K+ salts on growth and ion accumulation, (3) heavy metal tolerance and metal accumulation potential, (4) the effect of different forms of Pb salts (nitrate and acetate) on plant growth and Pb accumulation. A negative effect of NaCl on plant biomass was evident at 0.5 g L-1 Na+ and growth was inhibited by 44% at 10 g L-1 Na+, and this was associated with changes in biomass allocation. The maximum Na+ accumulation (90.8 g kg-1) was found in the stems of plants treated with 10 g kg-1 Na+. The type of anion determined the salinity tolerance of R. sceleratus plants, as Na+ and K+ salts with an identical anion component had a comparable effect on plant growth: nitrates strongly stimulated plant growth, and chloride treatment resulted in slight but significant growth reduction, but plants treated with nitrites and carbonates died within 4 and 5 weeks after the full treatment, respectively. The shoot growth of R. sceleratus plants was relatively insensitive to treatment with Mn, Cd and Zn in the form of sulphate salts, but Pb nitrate increased it. Hyperaccumulation threshold concentration values in the leaves of R. sceleratus were reached for Cd, Pb and Zn. R. sceleratus can be characterized as a shoot accumulator of heavy metals and a hyperaccumulator of Na+. A relatively short life cycle together with a high biomass accumulation rate makes R. sceleratus useful for dynamic constructed wetland systems aiming for the purification of concentrated wastewaters.

7.
Plants (Basel) ; 11(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36015407

ABSTRACT

The aim of the present study was to compare the tolerance to several heavy metals and their accumulation potential of Armeria maritima subsp. elongata accessions from relatively dry sandy soil habitats in the Baltic Sea region using both in vitro cultivated shoot explants and long-term soil-cultivated plants at the flowering stage as model systems. The hypothesis that was tested was that all accessions will show a relatively high heavy metal tolerance and a reasonable metal accumulation potential, but possibly to varying degrees. Under the conditions of the tissue culture, the explants accumulated extremely high concentration of Cd and Cu, leading to growth inhibition and eventual necrosis, but the accumulation of Pb in their tissues was limited. When grown in soil, the plants from different accessions showed a very high heavy metal tolerance, as the total biomass was not negatively affected by any of the treatments. The accumulation potential for heavy metals in soil-grown plants was high, with several significant accession- and metal-related differences. In general, the heavy metal accumulation potential in roots and older leaves was similar, except for Mn, which accumulated more in older leaves. The absolute higher values of the heavy metal concentrations reached in the leaves of soil-grown A. maritima plants (500 mg Cd kg-1, 600 mg Cu kg-1, 12,000 mg Mn kg-1, 1500 mg Pb kg-1, and 15,000 mg Zn kg-1) exceeded the respective threshold values for hyperaccumulation. In conclusion, A. maritima can be characterized by a species-wide heavy metal tolerance and accumulation potential, but with a relatively high intraspecies diversity.

8.
AoB Plants ; 13(5): plab051, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34512941

ABSTRACT

Dianthus superbus is one of the most endangered species in Latvia and is on the verge of local extinction. Therefore, the aim of this study was to inventory previously identified populations of D. superbus in Latvia and to develop activities to conserve this species in accordance with the results obtained in situ. Expeditions on 18 previously documented locations, according to the data of Nature Conservation Agency, revealed only three existing D. superbus localities in Latvia with a significant number of specimens located in the Latgale region near Silenieki. In 2020, for the first time, two more new D. superbus localities were found in the vicinity of these three approved locations. As it is not possible to create micro-reserves in the existing localities which are mainly located either on roadsides or in a cemetery, additional activities are needed to preserve the D. superbus in Latvia. In vitro culture was initiated from shoot explants obtained in situ, from which, in turn, ex vitro plantings were done in the National Botanic Garden (NBG) and the Botanical Garden of the University of Latvia (BG UL). Their quality and compliance with plants in situ were analysed. Overall, it was concluded that the plants grown ex situ were qualitatively equivalent to those obtained in situ, as a very high percentage of seed viability and germination was found both for in situ and ex situ growing D. superbus. Based on the results obtained we could conclude that D. superbus is a species that is able to adapt to different soils with a wide range of nutrient levels, moisture conditions and pH, as long as there are three main preconditions-adequate lighting, low overgrowth of other plant species and non-destructive human activities.

9.
Sci Total Environ ; 747: 140921, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-32777490

ABSTRACT

Green infrastructures within sprawling cities provide essential ecosystem services, increasingly undermined by environmental stress. The main objective in this study was to relate the allocation patterns of NaCl contaminants to injury within foliage of lime trees mechanistically and distinguish between the effects of salt and other environmental stressors. Using field material representative of salt contamination levels in the street greenery of Riga, Latvia, the contribution of salt contaminants to structural and ultrastructural injury was analyzed, combining different microscopy techniques. On severely salt-polluted and dystrophic soils, the foliage of street lime trees showed foliar concentrations of Na/Cl up to 13,600/16,750 mg kg-1 but a still balanced nutrient content. The salt contaminants were allocated to all leaf blade tissues and accumulated in priority within mesophyll vacuoles, changing the vacuolar ionic composition at the expense of especially K and Ca. The size of mesophyll cells and vacuoles was increased as a function of NaCl concentration, suggesting impeded transpiration stream. In parallel, the cytoplasm showed degenerative changes, suggesting indirect stress effects. Hence, the lime trees in Riga showed tolerance to the dystrophic environmental conditions enhanced by salt pollution but their leaf physiology appeared directly impacted by the accumulation of contaminants within foliage.


Subject(s)
Sodium Chloride , Trees , Ecosystem , Latvia , Plant Leaves , Tilia
SELECTION OF CITATIONS
SEARCH DETAIL
...