Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 50(32): 11197-11205, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34338252

ABSTRACT

The primary and secondary coordination spheres can have large regulatory effects on the properties of metal complexes. To examine their influences on the properties of monomeric Fe complexes, the tripodal ligand containing phosphinic amido groups, N,N',N''-[nitrilotris(ethane-2,1-diyl)]tris(P,P-diphenylphosphinic amido) ([poat]3-), was used to prepare [FeII/IIIpoat]-/0 complexes. The FeII complex was four-coordinate with 4 N-atom donors comprising the primary coordination sphere. The FeIII complex was six-coordinate with two additional ligands coming from coordination of O-atom donors on two of the phosphinic amido groups in [poat]3-. In the crystalline phase, each complex was part of a cluster containing potassium ions in which KO[double bond, length as m-dash]P interactions served to connect two metal complexes. The [FeII/IIIpoat]-/0 complexes bound an NH3 molecule to form trigonal bipyramidal structures that also formed three intramolecular hydrogen bonds between the ammine ligand and the O[double bond, length as m-dash]P units of [poat]3-. The relatively negative one-electron redox potential of -1.21 V vs. [FeIII/IICp2]+/0 is attributed to the phosphinic amido group of the [poat]3- ligand. Attempts to form the FeIII-amido complex via deprotonation were not conclusive but isolation of [FeIIIpoat(NHtol)]- using the p-toluidine anion was successful, allowing for the full characterization of this complex.

2.
Dalton Trans ; 50(23): 8111-8119, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34019606

ABSTRACT

Bimetallic active sites are ubiquitous in metalloenzymes and have sparked investigations of synthetic models to aid in the establishment of structure-function relationship. We previously reported a series of discrete bimetallic complexes with [FeIII-(µ-OH)-MII] cores in which the ligand framework provides distinct binding sites for two metal centers. The formation of these complexes relied on a stepwise synthetic approach in which an FeIII-OH complex containing a sulfonamido tripodal ligand served as a synthon that promoted assembly. We have utilized this approach in the present study to produce a new series of bimetallic complexes with [FeIII-(µ-OH)-MII] cores (M = Ni, Cu, Zn) by using an ancillary ligand to the FeIII center that contains phosphinic amido groups. Assembly began with formation of an FeIII-OH that was subsequently used to bind the MII fragment that contained a triazacyclononane ligand. The series of bimetallic complexes were charactered structurally by X-ray diffraction methods, spectroscopically by absorption, vibrational, electron paramagnetic resonance spectroscopies, and electrochemically by cyclic voltammetry. A notable finding is that these new [FeIII-(µ-OH)-MII] complexes displayed significantly lower reduction potentials than their sulfonamido counterparts, which paves way for future studies on high valent bimetallic complexes in this scaffold.


Subject(s)
Metals, Heavy/chemistry , Organometallic Compounds/chemical synthesis , Crystallography, X-Ray , Electrochemical Techniques , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry
3.
J Am Chem Soc ; 142(27): 11804-11817, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32489096

ABSTRACT

High-valent nonheme FeIV-oxido species are key intermediates in biological oxidation, and their properties are proposed to be influenced by the unique microenvironments present in protein active sites. Microenvironments are regulated by noncovalent interactions, such as hydrogen bonds (H-bonds) and electrostatic interactions; however, there is little quantitative information about how these interactions affect crucial properties of high valent metal-oxido complexes. To address this knowledge gap, we introduced a series of FeIV-oxido complexes that have the same S = 2 spin ground state as those found in nature and then systematically probed the effects of noncovalent interactions on their electronic, structural, and vibrational properties. The key design feature that provides access to these complexes is the new tripodal ligand [poat]3-, which contains phosphinic amido groups. An important structural aspect of [FeIVpoat(O)]- is the inclusion of an auxiliary site capable of binding a Lewis acid (LAII); we used this unique feature to further modulate the electrostatic environment around the Fe-oxido unit. Experimentally, studies confirmed that H-bonds and LAII s can interact directly with the oxido ligand in FeIV-oxido complexes, which weakens the Fe═O bond and has an impact on the electronic structure. We found that relatively large vibrational changes in the Fe-oxido unit correlate with small structural changes that could be difficult to measure, especially within a protein active site. Our work demonstrates the important role of noncovalent interactions on the properties of metal complexes, and that these interactions need to be considered when developing effective oxidants.


Subject(s)
Iron Compounds/chemistry , Oxides/chemistry , Density Functional Theory , Lewis Acids/chemistry , Molecular Conformation
4.
Chemistry ; 26(14): 3044-3048, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-31953874

ABSTRACT

A series of nickel complexes in varying oxidation states were evaluated as precatalysts for the stereospecific cross-coupling of benzylic ethers. These results demonstrate rapid redox reactions of precatalysts, such that the oxidative state of the precatalyst does not dictate the oxidation state of the active catalyst in solution. These data provide the first experimental evidence for a Ni0 -NiII catalytic cycle for a stereospecific alkyl-alkyl cross-coupling reaction, including spectroscopic analysis of the catalyst resting state.

5.
J Am Chem Soc ; 140(49): 17040-17050, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30427681

ABSTRACT

Incorporation of the triad of redox activity, hemilability, and proton responsivity into a single ligand scaffold is reported. Due to this triad, the complexes Fe(PyrrPDI)(CO)2 (3) and Fe(MorPDI)(CO)2 (4) display 40-fold enhancements in the initial rate of NO2- reduction, with respect to Fe(MeOPDI)(CO)2 (7). Utilizing the proper sterics and p Ka of the pendant base(s) to introduce hemilability into our ligand scaffolds, we report unusual {FeNO} x mononitrosyl iron complexes (MNICs) as intermediates in the NO2- reduction reaction. The {FeNO} x species behave spectroscopically and computationally similar to {FeNO}7, an unusual intermediate-spin Fe(III) coupled to triplet NO- and a singly reduced PDI ligand. These {FeNO} x MNICs facilitate enhancements in the initial rate.


Subject(s)
Coordination Complexes/chemistry , Nitrites/chemistry , Protons , Coordination Complexes/chemical synthesis , Density Functional Theory , Iron/chemistry , Kinetics , Ligands , Models, Chemical , Nitric Oxide/chemical synthesis , Oxidation-Reduction
6.
Inorg Chem ; 57(21): 13341-13350, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30299920

ABSTRACT

Hydrogen bonds (H-bonds) within the secondary coordination sphere are often invoked as essential noncovalent interactions that lead to productive chemistry in metalloproteins. Incorporating these types of effects within synthetic systems has proven a challenge in molecular design that often requires the use of rigid organic scaffolds to support H-bond donors or acceptors. We describe the preparation and characterization of a new hybrid tripodal ligand ([H2pout]3-) that contains two monodeprotonated urea groups and one phosphinic amide. The urea groups serve as H-bond donors, while the phosphinic amide group serves as a single H-bond acceptor. The [H2pout]3- ligand was utilized to stabilize a series of Mn-hydroxido complexes in which the oxidation state of the metal center ranges from 2+ to 4+. The molecular structure of the MnIII-OH complex demonstrates that three intramolecular H-bonds involving the hydroxido ligand are formed. Additional evidence for the formation of intramolecular H-bonds was provided by vibrational spectroscopy in which the energy of the O-H vibration supports its assignment as an H-bond donor. The stepwise oxidation of [MnIIH2pout(OH)]2- to its higher oxidized analogs was further substantiated by electrochemical measurements and results from electronic absorbance and electron paramagnetic resonance spectroscopies. Our findings illustrate the utility of controlling both the primary and secondary coordination spheres to achieve structurally similar Mn-OH complexes with varying oxidation states.

7.
Angew Chem Int Ed Engl ; 57(49): 16010-16014, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30353620

ABSTRACT

Hydrogen bonds (H-bonds) have been shown to modulate the chemical reactivities of iron centers in iron-containing dioxygen-activating enzymes and model complexes. However, few examples are available that investigate how systematic changes in intramolecular H-bonds within the secondary coordination sphere influence specific properties of iron intermediates, such as iron-oxido/hydroxido species. Here, we used 57 Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the Fe-O/OH vibrations in a series of FeIII -hydroxido and FeIV/III -oxido complexes with varying H-bonding networks but having similar trigonal bipyramidal primary coordination spheres. The data show that even subtle changes in the H-bonds to the Fe-O/OH units result in significant changes in their vibrational frequencies, thus demonstrating the utility of NRVS in studying the effect of the secondary coordination sphere to the reactivities of iron complexes.


Subject(s)
Hydroxides/chemistry , Iron Compounds/chemistry , Oxides/chemistry , Hydrogen Bonding , Iron Isotopes , Magnetic Resonance Spectroscopy , Molecular Conformation , Vibration
8.
Chemistry ; 23(48): 11479-11484, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28688116

ABSTRACT

Oxidation of the nucleophilic nitride, (salen)Mn≡N (1) with stoichiometric [Ar3 N][X] initiated a nitride coupling reaction to N2 , a major step toward catalytic ammonia oxidation (salen=N,N'-bis(salicylidene)-ethylenediamine dianion; Ar=p-bromophenyl; X=[SbCl6 ]- or [B(C6 F5 )4 ]- ). N2 production was confirmed by mass spectral analysis of the isotopomer, 1-15 N, and the gas quantified. The metal products of oxidation were the reduced MnIII dimers, [(salen)MnCl]2 (2) or [(salen)Mn(OEt2 )]2 [B(C6 F5 )4 ]2 (3) for X=[SbCl6 ]- or [B(C6 F5 )4 ]- , respectively. The mechanism of nitride coupling was probed to distinguish a nitridyl from a nucleophilic/electrophilic coupling sequence. During these studies, a rare mixed-valent MnV /MnIII bridging nitride, [(salen)MnV (µ-N)MnIII (salen)][B(C6 F5 )4 ] (4), was isolated, and its oxidation-state assignment was confirmed by X-ray diffraction (XRD) studies, perpendicular and parallel-mode EPR and UV/Vis/NIR spectroscopies, as well as superconducting quantum interference device (SQUID) magnetometry. We found that 4 could subsequently be oxidized to 3. Furthermore, in view of generating a catalytic system, 2 can be re-oxidized to 1 in the presence of NH3 and NaOCl closing a pseudo-catalytic "synthetic" cycle. Together, the reduction of 1→2 followed by oxidation of 2→1 yield a genuine synthetic cycle for NH3 oxidation, paving the way to the development of a fully catalytic system by using abundant metal catalysis.

9.
J Am Chem Soc ; 138(32): 10124-7, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27487256

ABSTRACT

The P-cluster is a unique iron-sulfur center that likely functions as a dynamic electron (e(-)) relay site between the Fe-protein and the catalytic FeMo-cofactor in nitrogenase. The P-cluster has been shown to undergo large conformational changes upon 2-e(-) oxidation which entail the coordination of two of the Fe centers to a Ser side chain and a backbone amide N, respectively. Yet, how and if this 2-e(-) oxidized state (P(OX)) is involved in catalysis by nitrogenase is not well established. Here, we present the crystal structures of reduced and oxidized MoFe-protein (MoFeP) from Gluconacetobacter diazotrophicus (Gd), which natively possesses an Ala residue in the position of the Ser ligand to the P-cluster. While reduced Gd-MoFeP is structurally identical to previously characterized counterparts around the FeMo-cofactor, oxidized Gd-MoFeP features an unusual Tyr coordination to its P-cluster along with ligation by a backbone amide nitrogen. EPR analysis of the oxidized Gd-MoFeP P-cluster confirmed that it is a 2-e(-) oxidized, integer-spin species. Importantly, we have found that the sequence positions corresponding to the Ser and Tyr ligands are almost completely covariant among Group I nitrogenases. These findings strongly support the possibility that the P(OX) state is functionally relevant in nitrogenase catalysis and that a hard, O-based anionic ligand serves to stabilize this state in a switchable fashion.


Subject(s)
Electrons , Gluconacetobacter/enzymology , Nitrogenase/chemistry , Tyrosine/chemistry , Alanine/chemistry , Bacterial Proteins/chemistry , Binding Sites , Catalysis , Electron Spin Resonance Spectroscopy , Electron Transport , Iron-Sulfur Proteins/chemistry , Ligands , Molybdoferredoxin/metabolism , Oxidation-Reduction , Oxygen/chemistry , Protein Conformation
10.
J Am Chem Soc ; 138(12): 3946-9, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-26996823

ABSTRACT

An efficient iodination reaction of electron-deficient heterocycles is described. The reaction utilizes KO(t)Bu as an initiator and likely proceeds by a radical anion propagation mechanism. This new methodology is particularly effective for functionalization of building blocks for electron transport materials. Its utility is demonstrated with the synthesis of a new perylenediimide-thiazole non-fullerene acceptor capable of delivering a power conversion efficiency of 4.5% in a bulk-heterojunction organic solar cell.

11.
J Inorg Biochem ; 131: 76-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24275750

ABSTRACT

The psychrophilic, hydrocarbonoclastic microorganism Colwellia psychrerythraea is important in global nutrient cycling and bioremediation. In order to investigate how this organism can live so efficiently at low temperatures (~4°C), thermal denaturation studies of a small electron transfer protein from Colwellia were performed. Colwellia cytochrome c552 was overexpressed in Escherichia coli, isolated, purified, and characterized by UV-visible absorption spectroscopy. The melting temperature (Tm) and the van't Hoff enthalpy (ΔHvH) were determined. These values suggest an unexpectedly high stability for this psychrophilic cytochrome.


Subject(s)
Cytochrome c Group/chemistry , Cytochrome c Group/isolation & purification , Gammaproteobacteria/enzymology , Cytochrome c Group/genetics , Cytochrome c Group/metabolism , Escherichia coli/genetics , Protein Denaturation , Protein Folding , Protein Stability , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...