Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(10): 100801, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962023

ABSTRACT

Estimation of expectation values of incompatible observables is an essential practical task in quantum computing, especially for approximating energies of chemical and other many-body quantum systems. In this Letter, we introduce a method for this purpose based on performing a single joint measurement that can be implemented locally and whose marginals yield noisy (unsharp) versions of the target set of noncommuting Pauli observables. We derive bounds on the number of experimental repetitions required to estimate energies up to a certain precision. We compare this strategy to the classical shadow formalism and show that our method yields the same performance as the locally biased classical shadow protocol. We also highlight some general connections between the two approaches by showing that classical shadows can be used to construct joint measurements and vice versa. Finally, we adapt the joint measurement strategy to minimise the sample complexity when the implementation of measurements is assumed noisy. This can provide significant efficiency improvements compared to known generalizations of classical shadows to noisy scenarios.

2.
Phys Rev Lett ; 119(22): 220502, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29286776

ABSTRACT

For numerous applications of quantum theory it is desirable to be able to apply arbitrary unitary operations on a given quantum system. However, in particular situations only a subset of unitary operations is easily accessible. This raises the question of what additional unitary gates should be added to a given gate set in order to attain physical universality, i.e., to be able to perform arbitrary unitary transformation on the relevant Hilbert space. In this work, we study this problem for three paradigmatic cases of naturally occurring restricted gate sets: (A) particle-number preserving bosonic linear optics, (B) particle-number preserving fermionic linear optics, and (C) general (not necessarily particle-number preserving) fermionic linear optics. Using tools from group theory and control theory, we classify, in each of these scenarios, what sets of gates are generated, if an additional gate is added to the set of allowed transformations. This allows us to solve the universality problem completely for arbitrary number of particles and for arbitrary dimensions of the single-particle Hilbert space.

3.
Phys Rev Lett ; 119(19): 190501, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29219480

ABSTRACT

Standard projective measurements (PMs) represent a subset of all possible measurements in quantum physics, defined by positive-operator-valued measures. We study what quantum measurements are projective simulable, that is, can be simulated by using projective measurements and classical randomness. We first prove that every measurement on a given quantum system can be realized by classical randomization of projective measurements on the system plus an ancilla of the same dimension. Then, given a general measurement in dimension two or three, we show that deciding whether it is PM simulable can be solved by means of semidefinite programming. We also establish conditions for the simulation of measurements using projective ones valid for any dimension. As an application of our formalism, we improve the range of visibilities for which two-qubit Werner states do not violate any Bell inequality for all measurements. From an implementation point of view, our work provides bounds on the amount of white noise a measurement tolerates before losing any advantage over projective ones.

4.
Phys Rev Lett ; 116(11): 110403, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035290

ABSTRACT

The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.

SELECTION OF CITATIONS
SEARCH DETAIL
...