Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pol Arch Intern Med ; 134(3)2024 03 27.
Article in English | MEDLINE | ID: mdl-38165228

ABSTRACT

INTRODUCTION: Genome sequencing technologies reveal molecular mechanisms of differentiated thyroid cancer (DTC). Unlike somatic mutation analysis from thyroidectomy samples, germline mutations showing genetic susceptibility to DTC are less understood. OBJECTIVES: The study aimed to assess the prevalence of germline mutations predisposing to DTC in a cohort of Polish individuals based on their whole genome sequencing data. PATIENTS AND METHODS: We analyzed sequencing data from 1076 unrelated individuals totaling over 1018 billion read pairs and yielding an average 35.26 × read depth per genome, released openly for academic and clinical research as the Thousand Polish Genomes database (https://1000polishgenomes.com). The list of genes chosen for further analysis was based on the review of previous studies. RESULTS: The cohort contained 104 variants located within the coding and noncoding DNA sequences of 90 genes selected by ClinVar classification as pathogenic and potentially pathogenic. The frequency of variants in the Polish cohort was compared with the frequency estimated for the non­Finnish European population obtained from the gnomAD database (gnomad.broadinstitute.org). Significant differences in variant frequency were found for the APC, ARSB, ATM, BRCA1, CHEK2, DICER1, GPD1L, INSR, KCNJ10, MYH9, PALB2, PLCB1, PLEKHG5, PTEN, RET, SEC23B, SERPINA1, SLC26A4, SMAD3, STK11, TERT, TOE1, and WRN genes. CONCLUSIONS: Even though the Polish population is genetically similar to the other European populations, there are significant differences in variant frequencies contributing to the disease development and progression, such as those in the RET, CHEK2, BRCA1, SLC26A4, or TERT genes. Further studies are needed to identify genomic variants associated directly with DTC.


Subject(s)
Adenocarcinoma , Thyroid Neoplasms , Humans , Poland , Genetic Predisposition to Disease , Germ-Line Mutation , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics , Nuclear Proteins/genetics
2.
Cancers (Basel) ; 15(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36765597

ABSTRACT

Pre- and postsurgical differentiation between follicular thyroid adenoma (FTA) and follicular thyroid cancer (FTC) represents a significant diagnostic challenge. Furthermore, it remains unclear whether they share a common or distinct background and what the mechanisms underlying follicular thyroid lesions malignancy are. The study aimed to compare FTA and FTC by the comprehensive microarray and to identify recurrent regions of loss of heterozygosity (LOH). We analyzed formalin-fixed paraffin-embedded (FFPE) samples acquired from 32 Caucasian patients diagnosed with FTA (16) and FTC (16). We used the OncoScan™ microarray assay (Affymetrix, USA), using highly multiplexed molecular inversion probes for single nucleotide polymorphism (SNP). The total number of LOH was higher in FTC compared with FTA (18 vs. 15). The most common LOH present in 21 cases, in both FTA (10 cases) and FTC (11 cases), was 16p12.1, which encompasses many cancer-related genes, such as TP53, and was followed by 3p21.31. The only LOH present exclusively in FTA patients (56% vs. 0%) was 11p11.2-p11.12. The alteration which tended to be detected more often in FTC (6 vs. 1 in FTA) was 12q24.11-q24.13 overlapping FOXN4, MYL2, PTPN11 genes. FTA and FTC may share a common genetic background, even though differentiating rearrangements may also be detected.

SELECTION OF CITATIONS
SEARCH DETAIL
...