Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 155, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383183

ABSTRACT

Understanding biodiversity patterns as well as drivers of population declines, and range losses provides crucial baselines for monitoring and conservation. However, the information needed to evaluate such trends remains unstandardised and sparsely available for many taxonomic groups and habitats, including the cave-dwelling bats and cave ecosystems. We developed the DarkCideS 1.0 ( https://darkcides.org/ ), a global database of bat caves and species synthesised from publicly available information and datasets. The DarkCideS 1.0 is by far the largest database for cave-dwelling bats, which contains information for geographical location, ecological status, species traits, and parasites and hyperparasites for 679 bat species are known to occur in caves or use caves in part of their life histories. The database currently contains 6746 georeferenced occurrences for 402 cave-dwelling bat species from 2002 cave sites in 46 countries and 12 terrestrial biomes. The database has been developed to be collaborative and open-access, allowing continuous data-sharing among the community of bat researchers and conservation biologists to advance bat research and comparative monitoring and prioritisation for conservation.


Subject(s)
Chiroptera , Animals , Biodiversity , Databases, Factual , Ecosystem
2.
PLoS One ; 11(10): e0164938, 2016.
Article in English | MEDLINE | ID: mdl-27792729

ABSTRACT

Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140-185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform.


Subject(s)
Acute-Phase Reaction/metabolism , Chiroptera/immunology , Energy Metabolism/physiology , Inflammation/metabolism , Acute-Phase Reaction/physiopathology , Animals , Basal Metabolism/drug effects , Basal Metabolism/physiology , Body Temperature/drug effects , Body Temperature/physiology , Chiroptera/metabolism , Chiroptera/physiology , Energy Metabolism/drug effects , Female , Inflammation/physiopathology , Lipopolysaccharides/pharmacology , Male , Phytohemagglutinins/pharmacology
3.
J Exp Biol ; 218(Pt 8): 1180-7, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25911733

ABSTRACT

Flying vertebrates, such as bats, face special challenges with regards to the throughput and digestion of food. On the one hand, as potentially energy-limited organisms, bats must ingest and assimilate energy efficiently in order to satisfy high resting and active metabolic demands. On the other hand, the assimilation of nutrients must be accomplished using a digestive tract that is, compared with that of similarly sized non-flying vertebrates, significantly shorter. Despite these competing demands, and the relative breadth of dietary diversity among bats, little work has been done describing the cost of digestion, termed 'specific dynamic action' (SDA). Here, we provide the first systematic assessment of the SDA response in a bat, the fish-eating myotis (Myotis vivesi). Given the shorter digestive tract and the relatively higher resting and active metabolic rates of bats in general, and based on anecdotal published evidence, we hypothesized that the SDA response in fish-eating myotis would be dependent on meal size and both significantly more brief and intense than in small, non-flying mammals. In agreement with our hypothesis, we found that the peak metabolic rate during digestion, relative to rest, was significantly higher in these bats compared with any other mammals or vertebrates, except for some infrequently eating reptiles and amphibians. Additionally, we found that the magnitude and duration of the SDA response were related to meal size. However, we found that the duration of the SDA response, while generally similar to reported gut transit times in other small bats, was not substantially shorter than in similarly sized non-flying mammals.


Subject(s)
Chiroptera/physiology , Animals , Body Size , Energy Metabolism , Feeding Behavior , Gastrointestinal Tract/physiology , Gastrointestinal Transit , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...