Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(7)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37511823

ABSTRACT

The Hayabusa2 mission was tasked with returning samples from the C-complex asteroid Ryugu (1999 JU3), in order to shed light on the formation, evolution and composition of such asteroids. One of the main science objectives was to understand whether such bodies could have supplied the organic matter required for the origin of life on Earth. Here, a review of the studies concerning the organic matter within the Ryugu samples is presented. This review will inform the reader about the Hayabusa2 mission, the nature of the organic matter analyzed and the various interpretations concerning the analytical findings including those concerning the origin and evolution of organic matter from Ryugu. Finally, the review puts the findings and individual interpretations in the context of the current theories surrounding the formation and evolution of Ryugu. Overall, the summary provided here will help to inform those operating in a wide range of interdisciplinary fields, including planetary science, astrobiology, the origin of life and astronomy, about the most recent developments concerning the organic matter in the Ryugu return samples and their relevance to understanding our solar system and beyond. The review also outlines the issues that still remain to be solved and highlights potential areas for future work.

2.
Nat Commun ; 14(1): 1482, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932072

ABSTRACT

All life on Earth contains amino acids and carbonaceous chondrite meteorites have been suggested as their source at the origin of life on Earth. While many meteoritic amino acids are considered indigenous, deciphering the extent of terrestrial contamination remains an issue. The Ryugu asteroid fragments (JAXA Hayabusa2 mission), represent the most uncontaminated primitive extraterrestrial material available. Here, the concentrations of amino acids from two particles from different touchdown sites (TD1 and TD2) are reported. The concentrations show that N,N-dimethylglycine (DMG) is the most abundant amino acid in the TD1 particle, but below detection limit in the other. The TD1 particle mineral components indicate it experienced more aqueous alteration. Furthermore, the relationships between the amino acids and the geochemistry suggest that DMG formed on the Ryugu progenitor body during aqueous alteration. The findings highlight the importance of aqueous chemistry for defining the ultimate concentrations of amino acids in primitive extraterrestrial samples.

3.
Astrobiology ; 22(11): 1293-1309, 2022 11.
Article in English | MEDLINE | ID: mdl-36074082

ABSTRACT

We measured the N concentrations and isotopic compositions of 44 samples of terrestrial potassic and micro- and meso-porous minerals and a small number of whole-rocks to determine the extent to which N is incorporated and stored during weathering and low-temperature hydrothermal alteration in Mars surface/near-surface environments. The selection of these minerals and other materials was partly guided by the study of altered volcanic glass from Antarctica and Iceland, in which the incorporation of N as NH4+ in phyllosilicates is indicated by correlated concentrations of N and the LILEs (i.e., K, Ba, Rb, Cs), with scatter likely related to the presence of exchanged, occluded/trapped, or encapsulated organic/inorganic N occurring within structural cavities (e.g., in zeolites). The phyllosilicates, zeolites, and sulfates analyzed in this study contain between 0 and 99,120 ppm N and have δ15Nair values of -34‰ to +65‰. Most of these minerals, and the few siliceous hydrothermal deposits that were analyzed, have δ15N consistent with the incorporation of biologically processed N during low-temperature hydrothermal or weathering processes. Secondary ion mass spectrometry on altered hyaloclastites demonstrates the residency of N in smectites and zeolites, and silica. We suggest that geological materials known on Earth to incorporate and store N and known to be abundant at, or near, the surface of Mars should be considered targets for upcoming Mars sample return with the intent to identify any signs of ancient or modern life.


Subject(s)
Mars , Zeolites , Exobiology/methods , Nitrogen , Porosity , Minerals/analysis , Earth, Planet , Extraterrestrial Environment
4.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(6): 227-282, 2022.
Article in English | MEDLINE | ID: mdl-35691845

ABSTRACT

Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10's of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.


Subject(s)
Meteoroids , Solar System , Water
5.
Astrobiology ; 21(1): 39-59, 2021 01.
Article in English | MEDLINE | ID: mdl-33404294

ABSTRACT

For decades, deep sea hydrothermal vents have been a preferred setting for the Origin of Life, but "The Water Problem" as relates to polymerization of organic molecules, together with a propensity to dilute critical prebiotic elements as well as a number of other crucial factors, suggests that a terrestrial hot spring field with the capacity for wet-dry cycling and element concentration may represent a more likely candidate. Here, we investigate a 3.5 billion-year-old, anoxic hot spring setting from the Pilbara Craton (Australia) and show that its hydrothermal veins and compositionally varied pools and springs concentrated all of the essential elements required for prebiotic chemistry (including B, Zn, Mn, and K, in addition to C, H, N, O, P, and S). Temporal variability (seasonal to decadal), together with the known propensity of hot springs for wet-dry cycling and information exchange, would lead to innovation pools with peaks of fitness for developing molecules. An inference from the chemical complexity of the Pilbara analogue is that life could perhaps get started quickly on planets with volcanoes, silicate rocks, an exposed land surface, and water, ingredients that should form the backbone in the search for life in the Universe.


Subject(s)
Hot Springs , Australia , Origin of Life , Silicates , Water , Western Australia
6.
Astrobiology ; 19(12): 1459-1473, 2019 12.
Article in English | MEDLINE | ID: mdl-31287717

ABSTRACT

Boron is associated with several Archean stromatolite deposits, including the tourmaline-rich Barberton stromatolites in South Africa and tourmaline-bearing pyritic laminae associated with stromatolites of the 3.48 Ga Dresser Formation in the Pilbara Craton, Australia. Boron is also a critical element in prebiotic organic chemistry, including in the formation of ribose, a crucial component in RNA. As geological evidence and advances in prebiotic chemistry are now suggesting that hot spring activity may be associated with the origins of life, an understanding of boron and its mobility and isotopic fractionation in geothermal settings may provide important insights into the setting for the origin of life. Here, we report on the boron isotopic compositions and elemental concentrations in a range of fluid, sediment, and mineral samples from the active, boron-rich Puga geothermal system in the Himalayas, India. This includes one of the lowest boron isotope values ever recorded in modern settings: diatom-rich sediments (δ11B = -41.0‰) in a multiphase fractionation system where evaporation is not the dominant form of isotope fractionation. Instead, the extreme boron isotopic fractionation is ascribed to the incorporation of tetrahedral 10B borate anions in precipitating amorphous silica. These findings expand the known limits and drivers of boron isotope fractionation, as well as provide insight into the concentration and fractionation of boron in Archean hot spring environments.


Subject(s)
Archaea/metabolism , Boron/analysis , Geologic Sediments/analysis , Hot Springs/chemistry , Origin of Life , Boron/chemistry , Chemical Fractionation/methods , Ecosystem , Geologic Sediments/chemistry , Geologic Sediments/microbiology , India , Isotopes/analysis , Isotopes/chemistry , Silicates/analysis , Silicates/chemistry
7.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(4): 165-177, 2019.
Article in English | MEDLINE | ID: mdl-30971619

ABSTRACT

A comprehensive geochemical study of the Chelyabinsk meteorite reveals further details regarding its history of impact-related fragmentation and melting, and later aqueous alteration, during its transit toward Earth. We support an ∼30 Ma age obtained by Ar-Ar method (Beard et al., 2014) for the impact-related melting, based on Rb-Sr isotope analyses of a melt domain. An irregularly shaped olivine with a distinct O isotope composition in a melt domain appears to be a fragment of a silicate-rich impactor. Hydrogen and Li concentrations and isotopic compositions, textures of Fe oxyhydroxides, and the presence of organic materials located in fractures, are together consistent with aqueous alteration, and this alteration could have pre-dated interaction with the Earth's atmosphere. As one model, we suggest that hypervelocity capture of the impact-related debris by a comet nucleus could have led to shock-wave-induced supercritical aqueous fluids dissolving the silicate, metallic, and organic matter, with later ice sublimation yielding a rocky rubble pile sampled by the meteorite.


Subject(s)
Meteoroids , Water/chemistry , Earth, Planet , Evolution, Planetary
8.
Sci Rep ; 8(1): 9887, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29959384

ABSTRACT

The chemical compositions of the residues of the mantle melting that produces mid-ocean ridge basalt can be altered by fluid-rock interactions at spreading ridges and, possibly, during seawater penetration along bending-related faults in plates approaching trenches. This chemically modified rock, if subducted deeply and after long-term residence within the deep Earth, is a potential source of chemical heterogeneity in the mantle. Here, we demonstrate that peridotites from the Horoman massif preserve the chemical signatures of sub-seafloor hydrothermal (SSH) alteration at a mid-ocean ridge approximately one billion years ago. These rocks have evolved chemically subsequent to this SSH alteration; however, they retain the SSH-associated enrichments in fluid mobile elements and H2O despite their long-term residence within the mantle. Our results indicate that ancient SSH alteration resulting in the production of sulfide leads to Pb enrichment that could affect the present-day Pb isotopic evolution of the silicate earth. Evidence from the Horoman massif of the recycling of hydrous refractory domains into the mantle suggests that both the flux of H2O content into the mantle and the size of the mantle H2O reservoir are higher than have been estimated recently.

9.
Proc Natl Acad Sci U S A ; 109(11): E624-9, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22371561

ABSTRACT

Records of micrometeorite collisions at down to submicron scales were discovered on dust grains recovered from near-Earth asteroid 25143 (Itokawa). Because the grains were sampled from very near the surface of the asteroid, by the Hayabusa spacecraft, their surfaces reflect the low-gravity space environment influencing the physical nature of the asteroid exterior. The space environment was examined by description of grain surfaces and asteroidal scenes were reconstructed. Chemical and O isotope compositions of five lithic grains, with diameters near 50 µm, indicate that the uppermost layer of the rubble-pile-textured Itokawa is largely composed of equilibrated LL-ordinary-chondrite-like material with superimposed effects of collisions. The surfaces of the grains are dominated by fractures, and the fracture planes contain not only sub-µm-sized craters but also a large number of sub-µm- to several-µm-sized adhered particles, some of the latter composed of glass. The size distribution and chemical compositions of the adhered particles, together with the occurrences of the sub-µm-sized craters, suggest formation by hypervelocity collisions of micrometeorites at down to nm scales, a process expected in the physically hostile environment at an asteroid's surface. We describe impact-related phenomena, ranging in scale from 10(-9) to 10(4) meters, demonstrating the central role played by impact processes in the long-term evolution of planetary bodies. Impact appears to be an important process shaping the exteriors of not only large planetary bodies, such as the moon, but also low-gravity bodies such as asteroids.

SELECTION OF CITATIONS
SEARCH DETAIL
...