Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Appl Fluoresc ; 10(4)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36027875

ABSTRACT

This article reviews the use of the 6-acetyl-2-(dimethylamino)naphthalene (ACDAN) fluorophore to study dipolar relaxation in cells, tissues, and biomimetic systems. As the most hydrophilic member of the 6-acyl-2-(dimethylamino)naphthalene series, ACDAN markedly partitions to aqueous environments. In contrast to 6-lauroyl-2-(dimethylamino)naphthalene (LAURDAN), the hydrophobic and best-known member of the series used to explore relaxation phenomena in biological (or biomimetic) membranes, ACDAN allows mapping of spatial and temporal water dipolar relaxation in cytosolic and intra-organelle environments of the cell. This is also true for the 6-propionyl-2-(dimethylamino)naphthalene (PRODAN) derivative which, unlike LAURDAN, partitions to both hydrophobic and aqueous environments. We will (i) summarize the mechanism which underlies the solvatochromic properties of the DAN probes, (ii) expound on the importance of water relaxation to understand the intracellular environment, (iii) discuss technical aspects of the use of ACDAN in eukaryotic cells and some specialized structures, including liquid condensates arising from processes leading to liquid immiscibility and, (iv) present some novel studies in plant cells and tissues which demonstrate the kinds of information that can be uncovered using this approach to study dipolar relaxation in living systems.


Subject(s)
Fluorescent Dyes , Water , Fluorescent Dyes/chemistry , Naphthalenes , Water/chemistry
2.
Front Plant Sci ; 13: 1052358, 2022.
Article in English | MEDLINE | ID: mdl-36600927

ABSTRACT

Physcomitrium patens apical growing protonemal cells have the singularity that they continue to undergo cell divisions as the plant develops. This feature provides a valuable tool to study autophagy in the context of a multicellular apical growing tissue coupled to development. Herein, we showed that the core autophagy machinery is present in the moss P. patens, and characterized the 2D and 3D growth and development of atg5 and atg7 loss-of-function mutants under optimal and nutrient-deprived conditions. Our results showed that 2D growth of the different morphological and functional protonemata apical growing cells, chloronema and caulonema, is differentially modulated by this process. These differences depend on the protonema cell type and position along the protonemal filament, and growth condition. As a global plant response, the absence of autophagy favors the spread of the colony through protonemata growth at the expense of a reduction of the 3D growth, such as the buds and gametophore development, and thus the adult gametophytic and reproductive phases. Altogether this study provides valuable information suggesting that autophagy has roles during apical growth with differential responses within the cell types of the same tissue and contributes to life cycle progression and thus the growth and development of the 2D and 3D tissues of P. patens.

3.
Plant Dis ; 105(9): 2268-2280, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33904333

ABSTRACT

Smut fungi, such as Ustilago maydis, have been studied extensively as a model for plant-pathogenic basidiomycetes. However, little attention has been paid to smut diseases of agronomic importance that are caused by species of the genus Thecaphora, probably due to their more localized distribution. Peanut smut incited by Thecaphora frezii has been reported only in South America, and Argentina is the only country where this disease has been noted in commercial peanut production. In this work, important advances in deciphering T. frezii specific biology/pathobiology in relation to potato (T. solani), wheat (U. tritici), and barley (U. nuda) smuts are presented. We summarize the state of knowledge of fungal effectors, functionally characterized to date in U. maydis and most recently in T. thlaspeos, as well as the potential to be present in other Thecaphora species involved in dicot-host interactions like T. frezii-peanut. We also discuss applicability and limitations of currently available methods for identification of smut fungi in different situations and management strategies to reduce their impact on agri-food quality. We conclude by describing some of the challenges in elucidating T. frezii strategies that allow it to infect the host and tolerate or evade plant immune defense mechanisms, and assessing other aspects related to pest control and their implications for human health.


Subject(s)
Basidiomycota , Ustilaginales , Arachis , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...