Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 11237, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30026508

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

2.
Sci Rep ; 8(1): 8566, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29867204

ABSTRACT

The regulation of cognitive and emotional processes is critical for proper executive functions and social behavior, but its specific mechanisms remain unknown. Here, we addressed this issue by studying with functional magnetic resonance imaging the changes in network topology that underlie competitive interactions between emotional and cognitive networks in healthy participants. Our behavioral paradigm contrasted periods with high emotional and cognitive demands by including a sadness provocation task followed by a spatial working memory task. The sharp contrast between successive tasks was designed to enhance the separability of emotional and cognitive networks and reveal areas that regulate the flow of information between them (hubs). By applying graph analysis methods on functional connectivity between 20 regions of interest in 22 participants we identified two main brain network modules, one dorsal and one ventral, and their hub areas: the left dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub areas did not modulate their mutual functional connectivity following sadness but they did so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results identify dlPFC and mFP as areas regulating interactions between emotional and cognitive networks, and suggest that their modulation by sadness experience is mediated by sACC.


Subject(s)
Cognition/physiology , Emotions/physiology , Gyrus Cinguli , Magnetic Resonance Imaging , Nerve Net , Spatial Memory/physiology , Adult , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , Humans , Male , Nerve Net/diagnostic imaging , Nerve Net/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology
3.
Front Neurol ; 7: 21, 2016.
Article in English | MEDLINE | ID: mdl-26941708

ABSTRACT

Stroke is a leading cause of serious long-term disability worldwide. Functional outcome depends on stroke location, severity, and early intervention. Conventional rehabilitation strategies have limited effectiveness, and new treatments still fail to keep pace, in part due to a lack of understanding of the different stages in brain recovery and the vast heterogeneity in the poststroke population. Innovative methodologies for restorative neurorehabilitation are required to reduce long-term disability and socioeconomic burden. Neuroplasticity is involved in poststroke functional disturbances and also during rehabilitation. Tackling poststroke neuroplasticity by non-invasive brain stimulation is regarded as promising, but efficacy might be limited because of rather uniform application across patients despite individual heterogeneity of lesions, symptoms, and other factors. Transcranial direct current stimulation (tDCS) induces and modulates neuroplasticity, and has been shown to be able to improve motor and cognitive functions. tDCS is suited to improve poststroke rehabilitation outcomes, but effect sizes are often moderate and suffer from variability. Indeed, the location, extent, and pattern of functional network connectivity disruption should be considered when determining the optimal location sites for tDCS therapies. Here, we present potential opportunities for neuroimaging-guided tDCS-based rehabilitation strategies after stroke that could be personalized. We introduce innovative multimodal intervention protocols based on multichannel tDCS montages, neuroimaging methods, and real-time closed-loop systems to guide therapy. This might help to overcome current treatment limitations in poststroke rehabilitation and increase our general understanding of adaptive neuroplasticity leading to neural reorganization after stroke.

4.
Front Hum Neurosci ; 9: 236, 2015.
Article in English | MEDLINE | ID: mdl-25972805

ABSTRACT

Chronic communication impairment is common after stroke, and conventional speech and language therapy (SLT) strategies have limited effectiveness in post-stroke aphasia. Neurorehabilitation with non-invasive brain stimulation techniques (NIBS)-particularly repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS)-may enhance the effects of SLT in selected patients. Applying inhibitory NIBS to specific homologous language regions may induce neural reorganization and reduce interhemispheric competition. This mini review highlights randomized controlled trials (RCTs) and randomized cross-over trials using low-frequency rTMS or cathodal tDCS over the non-lesioned non-language dominant hemisphere and performs an exploratory meta-analysis of those trials considered combinable. Using a random-effects model, a meta-analysis of nine eligible trials involving 215 participants showed a significant mean effect size of 0.51 (95% CI = 0.24-0.79) for the main outcome "accuracy of naming" in language assessment. No heterogeneity was observed (I (2) = 0%). More multicenter RCTs with larger populations and homogenous intervention protocols are required to confirm these and the longer-term effects.

5.
Sensors (Basel) ; 11(2): 1277-96, 2011.
Article in English | MEDLINE | ID: mdl-22319351

ABSTRACT

The aging population and the high quality of life expectations in our society lead to the need of more efficient and affordable healthcare solutions. For this reason, this paper aims for the optimization of Medium Access Control (MAC) protocols for biomedical wireless sensor networks or wireless Body Sensor Networks (BSNs). The hereby presented schemes always have in mind the efficient management of channel resources and the overall minimization of sensors' energy consumption in order to prolong sensors' battery life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions). In order to emphasize IEEE 802.15.4 MAC limitations, this article presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs), which serves as a link for the introduction and initial description of our here proposed Distributed Queuing (DQ) MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead.


Subject(s)
Algorithms , Biomedical Technology/instrumentation , Computer Communication Networks/instrumentation , Wireless Technology/instrumentation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...