Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Front Microbiol ; 15: 1389663, 2024.
Article in English | MEDLINE | ID: mdl-38591031

ABSTRACT

The rise of multidrug-resistant bacteria is a global concern, leading to a renewed reliance on older antibiotics like polymyxins as a last resort. Polymyxins, cationic cyclic peptides synthesized nonribosomally, feature a hydrophobic acyl tail and positively charged residues. Their antimicrobial mechanism involves initial interaction with Gram-negative bacterial outer-membrane components through polar and hydrophobic interactions. Outer membrane vesicles (OMVs), nano-sized proteoliposomes secreted from the outer membrane of Gram-negative bacteria, play a crucial role in tolerating harmful molecules, including cationic peptides such as polymyxins. Existing literature has documented environmental changes' impact on modulating OMV properties in Salmonella Typhimurium. However, less information exists regarding OMV production and characteristics in Salmonella Typhi. A previous study in our laboratory showed that S. Typhi ΔmrcB, a mutant associated with penicillin-binding protein (PBP, a ß-lactam antibiotic target), exhibited hypervesiculation. Consequently, this study investigated the potential impact of ß-lactam antibiotics on promoting polymyxin tolerance via OMVs in S. Typhi. Our results demonstrated that sub-lethal doses of ß-lactams increased bacterial survival against polymyxin B in S. Typhi. This phenomenon stems from ß-lactam antibiotics inducing hypervesiculation of OMVs with higher affinity for polymyxin B, capturing and diminishing its biologically effective concentration. These findings suggest that ß-lactam antibiotic use may inadvertently contribute to decreased polymyxin effectivity against S. Typhi or other Gram-negative bacteria, complicating the effective treatment of infections caused by these pathogens. This study emphasizes the importance of evaluating the influence of ß-lactam antibiotics on the interaction between OMVs and other antimicrobial agents.

2.
Adv Exp Med Biol ; 1408: 65-82, 2023.
Article in English | MEDLINE | ID: mdl-37093422

ABSTRACT

Stimulation of a1-adrenergic nervous system is increased during systemic inflammation and other pathological conditions with the consequent adrenergic receptors (ARs) activation. It has been reported that a1-stimulation contributes to coagulation since a1-AR blockers inhibit coagulation and its organic consequences. Also, coagulation induced by a1-AR stimulation can be greatly decreased using a1-AR blockers. In health, endothelial cells (ECs) perform anticoagulant actions at cellular and molecular level. However, during inflammation, ECs turn dysfunctional promoting a procoagulant state. Endothelium-dependent coagulation progresses at cellular and molecular levels, promoting endothelial acquisition of procoagulant properties to potentiate coagulation by means of prothrombotic and antifibrinolytic proteins expression increase in ECs releasing them to circulation, the thrombus formation is strengthened. Calcium signaling is a main feature of coagulation. Inhibition of ion channels involved in Ca2+ entry severely decreases coagulation. The transient receptor potential canonical 6 (TRPC6) is a non-selective Ca2+-permeable ion channel. TRPC6 activity is induced by diacylglycerol, suggesting that is regulated by a1-ARs. Furthermore, a1-ARs stimulation elicits a TRPC-like current in rat mesenteric artery smooth muscle and mesangial cells. However, whether TRPC6 could promote an ECs-mediated platelet adhesion induced by a1-adrenergic stimulation is currently not known. Therefore, the aim of this study was to examine if the TRPC6 calcium channel mediates platelet adhesion induced by a1-adrenergic stimulation. Our results suggest that platelet adhesion to ECs is enhanced by the a1-adrenergic stimulation evoked by phenylephrine mediated by TRPC6 activity. We conclude that TRPC6 is a molecular determinant in platelet adhesion to ECs with implications in systemic inflammatory diseases treatment.


Subject(s)
Endothelial Cells , TRPC Cation Channels , Rats , Animals , TRPC6 Cation Channel , TRPC Cation Channels/metabolism , Endothelial Cells/metabolism , Adrenergic Agents , Inflammation/metabolism , Calcium/metabolism
3.
Pharmaceutics ; 15(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986757

ABSTRACT

Medicinal plants have been used since prehistoric times and continue to treat several diseases as a fundamental part of the healing process. Inflammation is a condition characterized by redness, pain, and swelling. This process is a hard response by living tissue to any injury. Furthermore, inflammation is produced by various diseases such as rheumatic and immune-mediated conditions, cancer, cardiovascular diseases, obesity, and diabetes. Hence, anti-inflammatory-based treatments could emerge as a novel and exciting approach to treating these diseases. Medicinal plants and their secondary metabolites are known for their anti-inflammatory properties, and this review introduces various native Chilean plants whose anti-inflammatory effects have been evaluated in experimental studies. Fragaria chiloensis, Ugni molinae, Buddleja globosa, Aristotelia chilensis, Berberis microphylla, and Quillaja saponaria are some native species analyzed in this review. Since inflammation treatment is not a one-dimensional solution, this review seeks a multidimensional therapeutic approach to inflammation with plant extracts based on scientific and ancestral knowledge.

4.
Neuron ; 110(10): 1656-1670.e12, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35276083

ABSTRACT

Non-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes. ACM-mediated MN death is prevented by degrading or neutralizing polyP in ALS/FTD astrocytes or ACM. Studies further reveal that postmortem familial and sporadic ALS spinal cord sections display enriched polyP staining signals and that ALS cerebrospinal fluid (CSF) exhibits increased polyP concentrations. Our in vitro results establish excessive astrocyte-derived polyP as a critical factor in non-cell-autonomous MN degeneration and a potential therapeutic target for ALS/FTD. The CSF data indicate that polyP might serve as a new biomarker for ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Animals , Astrocytes , C9orf72 Protein/genetics , Culture Media, Conditioned/pharmacology , Frontotemporal Dementia/genetics , Humans , Mice , Motor Neurons , Polyphosphates
5.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269699

ABSTRACT

Searching for adequate and effective compounds displaying antimicrobial activities, especially against Gram-positive bacteria, is an important research area due to the high hospitalization and mortality rates of these bacterial infections in both the human and veterinary fields. In this work, we explored (E)-4-amino-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino) benzoic acid (SB-1, harboring an intramolecular hydrogen bond) and (E)-2-((4-nitrobenzilidene)amino)aniline (SB-2), two Schiff bases derivatives. Results demonstrated that SB-1 showed an antibacterial activity determined by the minimal inhibitory concentration (MIC) against Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus (Gram-positive bacteria involved in human and animal diseases such as skin infections, pneumonia, diarrheal syndrome, and urinary tract infections, among others), which was similar to that shown by the classical antibiotic chloramphenicol. By contrast, this compound showed no effect against Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, and Salmonella enterica). Furthermore, we provide a comprehensive physicochemical and theoretical characterization of SB-1 (as well as several analyses for SB-2), including elemental analysis, ESMS, 1H and 13C NMR (assigned by 1D and 2D techniques), DEPT, UV-Vis, FTIR, and cyclic voltammetry. We also performed a computational study through the DFT theory level, including geometry optimization, TD-DFT, NBO, and global and local reactivity analyses.


Subject(s)
Gram-Positive Bacteria , Schiff Bases , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Gram-Negative Bacteria , Microbial Sensitivity Tests , Schiff Bases/chemistry , Schiff Bases/pharmacology
6.
Polymers (Basel) ; 14(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35054693

ABSTRACT

Modulation of the bio-regenerative characteristics of materials is an indispensable requirement in tissue engineering. Particularly, in bone tissue engineering, the promotion of the osteoconductive phenomenon determines the elemental property of a material be used therapeutically. In addition to the chemical qualities of the constituent materials, the three-dimensional surface structure plays a fundamental role that various methods are expected to modulate in a number of ways, one most promising of which is the use of different types of radiation. In the present manuscript, we demonstrate in a calvarial defect model, that treatment with ultraviolet irradiation allows modification of the osteoconductive characteristics in a biomaterial formed by gelatin and chitosan, together with the inclusion of hydroxyapatite and titanium oxide nanoparticles.

7.
Food Chem ; 370: 131012, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34500293

ABSTRACT

Peumus boldus is an endemic tree species from Chile whose leaves have been the focus of study for decades given that their infusions are reported to relieve rheumatic symptoms, headache, dyspepsia, urinary tract inflammation, and symptoms of other illnesses. These health properties have been studied mainly using leaves and bark, then it is relevant to know more about these properties in different parts of the plant. Considering the importance of P. boldus fruits in the diet of some rural populations, we analyzed their properties to explore its impact on the Chilean population health. Liquid chromatography and mass spectrometry analysis confirmed the presence of alkaloids such as boldine, although aporphine N-methyl-laurotetanine was the most abundant. In addition, flavonoids catechin, chrysin and quercetin were also found in the extract. Cytotoxicity and anti-inflammatory activities of the fruit extract were invitro tested by using a murine macrophage cell model, observing that a diluted fraction of the extract was not cytotoxic, but showed anti-inflammatory activity, which is likely attributed to antioxidants activities. By means of quantum chemical calculations, we calculated the redox potential of the respective alkaloids and flavonoids found in the extract. Results suggest a synergistic effect between alkaloids and flavonoids, where boldine and N-methyl-laurotetanine showed similar antioxidant properties. Finally, we present a description of the oxidation mechanisms for both groups of molecules which will sustain P. boldus fruit biological properties, in order to give this kind of fruits scientific value focusing on human health.


Subject(s)
Peumus , Animals , Antioxidants/pharmacology , Fruit , Humans , Mice , Plant Extracts/pharmacology , Plant Leaves
9.
Drug Deliv ; 28(1): 1020-1030, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34060399

ABSTRACT

NOD1 is an intracellular receptor that, when activated, induces gene expression of pro-inflammatory factors promoting macrophages and neutrophils recruitment at the infection site. However, iE-DAP, the dipeptide agonist that promotes this receptor's activation, cannot permeate cell membranes. To develop a nanocarrier capable of achieving a high and prolonged activation over time, iE-DAP was encapsulated in nanoparticles (NPs) made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The physicochemical properties, colloidal stability, encapsulation efficiency, and cellular uptake of iE-DAP-loaded PHVB NPs were analyzed. Results evidenced that physicochemical properties of iE-DAP-loaded NPs remained stable over time, and NPs were efficiently internalized into cells, a process that depends on time and concentration. Moreover, our results showed that NPs elicited a controlled cargo release in vitro, and the encapsulated agonist response was higher than its free form, suggesting the possibility of activating intracellular receptors triggering an immune response through the release of NOD1 agonist.


Subject(s)
Diaminopimelic Acid/analogs & derivatives , Nanoparticles/chemistry , Nod1 Signaling Adaptor Protein/drug effects , Animals , Cell Survival/drug effects , Chemistry, Pharmaceutical , Diaminopimelic Acid/administration & dosage , Diaminopimelic Acid/pharmacology , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Liberation , Drug Stability , Mice , Polyesters/chemistry , RAW 264.7 Cells
10.
Front Microbiol ; 12: 672467, 2021.
Article in English | MEDLINE | ID: mdl-34025627

ABSTRACT

The appearance of multi-resistant strains has contributed to reintroducing polymyxin as the last-line therapy. Although polymyxin resistance is based on bacterial envelope changes, other resistance mechanisms are being reported. Outer membrane vesicles (OMVs) are nanosized proteoliposomes secreted from the outer membrane of Gram-negative bacteria. In some bacteria, OMVs have shown to provide resistance to diverse antimicrobial agents either by sequestering and/or expelling the harmful agent from the bacterial envelope. Nevertheless, the participation of OMVs in polymyxin resistance has not yet been explored in S. Typhi, and neither OMVs derived from hypervesiculating mutants. In this work, we explored whether OMVs produced by the hypervesiculating strains Salmonella Typhi ΔrfaE (LPS synthesis), ΔtolR (bacterial envelope) and ΔdegS (misfolded proteins and σ E activation) exhibit protective properties against polymyxin B. We found that the OMVs extracted from S. Typhi ΔtolR and ΔdegS protect S. Typhi WT from polymyxin B in a concentration-depending manner. By contrast, the protective effect exerted by OMVs from S. Typhi WT and S. Typhi ΔrfaE is much lower. This effect is achieved by the sequestration of polymyxin B, as assessed by the more positive Zeta potential of OMVs with polymyxin B and the diminished antibiotic's availability when coincubated with OMVs. We also found that S. Typhi ΔtolR exhibited an increased MIC of polymyxin B. Finally, we determined that S. Typhi ΔtolR and S. Typhi ΔdegS, at a lesser level, can functionally and transiently transfer the OMV-mediated polymyxin B resistance to susceptible bacteria in cocultures. This work shows that mutants in genes related to OMVs biogenesis can release vesicles with improved abilities to protect bacteria against membrane-active agents. Since mutations affecting OMV biogenesis can involve the bacterial envelope, mutants with increased resistance to membrane-acting agents that, in turn, produce protective OMVs with a high vesiculation rate (e.g., S. Typhi ΔtolR) can arise. Such mutants can functionally transfer the resistance to surrounding bacteria via OMVs, diminishing the effective concentration of the antimicrobial agent and potentially favoring the selection of spontaneous resistant strains in the environment. This phenomenon might be considered the source for the emergence of polymyxin resistance in an entire bacterial community.

11.
Cells ; 9(12)2020 12 04.
Article in English | MEDLINE | ID: mdl-33291725

ABSTRACT

The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.


Subject(s)
Cardiovascular Diseases , Neoplasms , Neurodegenerative Diseases , TRPM Cation Channels/metabolism , Animals , Cardiovascular Diseases/metabolism , Cell Line, Tumor , Humans , Hydrogen Peroxide/chemistry , Ions , Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Phosphorylation , Phylogeny , Protein Domains , Reactive Oxygen Species , Retina/metabolism , Signal Transduction , Synapses/metabolism
12.
J Investig Med High Impact Case Rep ; 8: 2324709620940496, 2020.
Article in English | MEDLINE | ID: mdl-32643953

ABSTRACT

A 59-year-old male presented with 1 month of progressive dyspnea, 30-lb weight loss, and skin changes on the digits of the hands. In the 4 weeks prior to admission, he was admitted and treated twice for pneumonia at another hospital and received intravenous (IV) vancomycin, ceftriaxone, and azithromycin for a total of 10 days. After admission, he underwent computed tomography imaging of chest, which revealed findings suggestive of interstitial lung disease but given the fact that infection was not ruled out, empiric antibiotics were initiated. The skin lesions on the fingers were felt to be consistent with Gottron's papules, and his overall constellation of findings were felt to be consistent with dermatomyositis (DM). Over the following 3 days, he developed diffuse, violaceous skin lesions, elevation of liver transaminases, and severe thrombocytopenia. The skin lesions progressed to epidermal necrosis. He developed erosions of the oral mucosa and scrotum. Before skin biopsy results were finalized, IV immunoglobulin and IV dexamethasone were started empirically for suspected DM and immune-mediated thrombocytopenia. His laboratory abnormalities normalized within a week. Biopsy results of the skin were consistent with Stevens-Johnson syndrome (SJS). Autoantibody test for anti-MDA5 were positive, confirming a diagnosis of anti-MDA5 associated DM. Subsequent development of SJS was likely due to antibiotic exposure in the preceding month. Simultaneous development of anti-MDA5 DM and SJS raises the question of a link between the 2 conditions. To our knowledge, this is the first reported association of these 2 conditions reported in the literature.


Subject(s)
Autoantibodies/immunology , Dermatomyositis/immunology , Interferon-Induced Helicase, IFIH1/immunology , Stevens-Johnson Syndrome/etiology , Thrombocytopenia/etiology , Autoantibodies/blood , Dermatomyositis/complications , Dermatomyositis/drug therapy , Dexamethasone/administration & dosage , Humans , Immunoglobulins, Intravenous , Male , Middle Aged , Skin/pathology , Stevens-Johnson Syndrome/pathology , Thrombocytopenia/pathology
13.
Molecules ; 25(12)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545715

ABSTRACT

Botrytis cinerea is a ubiquitous necrotrophic filamentous fungal phytopathogen that lacks host specificity and can affect more than 1000 different plant species. In this work, we explored L1 [(E)-2-{[(2-aminopyridin-2-yl)imino]-methyl}-4,6-di-tert-butylphenol], a pyridine Schiff base harboring an intramolecular bond (IHB), regarding their antifungal activity against Botrytis cinerea. Moreover, we present a full characterization of the L1 by NMR and powder diffraction, as well as UV-vis, in the presence of previously untested different organic solvents. Complementary time-dependent density functional theory (TD-DFT) calculations were performed, and the noncovalent interaction (NCI) index was determined. Moreover, we obtained a scan-rate study on cyclic voltammetry of L1. Finally, we tested the antifungal activity of L1 against two strains of Botrytis cinerea (B05.10, a standard laboratory strain; and A1, a wild type strains isolated from Chilean blueberries). We found that L1 acts as an efficient antifungal agent against Botrytis cinerea at 26 °C, even better than the commercial antifungal agent fenhexamid. Although the antifungal activity was also observed at 4 °C, the effect was less pronounced. These results show the high versatility of this kind of pyridine Schiff bases in biological applications.


Subject(s)
Antifungal Agents , Botrytis/growth & development , Pyridines , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology
14.
Front Chem ; 7: 454, 2019.
Article in English | MEDLINE | ID: mdl-31297366

ABSTRACT

Re(I) complexes have exposed highly suitable properties for cellular imaging (especially for fluorescent microscopy) such as low cytotoxicity, good cellular uptake, and differential staining. These features can be modulated or tuned by modifying the ligands surrounding the metal core. However, most of Re(I)-based complexes have been tested for non-walled cells, such as epithelial cells. In this context, it has been proposed that Re(I) complexes are inefficient to stain walled cells (i.e., cells protected by a rigid cell wall, such as bacteria and fungi), presumably due to this physical barrier hampering cellular uptake. More recently, a series of studies have been published showing that a suitable combination of ligands is useful for obtaining Re(I)-based complexes able to stain walled cells. This review summarizes the main characteristics of different fluorophores used in bioimage, remarking the advantages of d6-based complexes, and focusing on Re(I) complexes. In addition, we explored different structural features of these complexes that allow for obtaining fluorophores especially designed for walled cells (bacteria and fungi), with especial emphasis on the ligand choice. Since many pathogens correspond to bacteria and fungi (yeasts and molds), and considering that these organisms have been increasingly used in several biotechnological applications, development of new tools for their study, such as the design of new fluorophores, is fundamental and attractive.

15.
Crit Care Med ; 47(7): 942-950, 2019 07.
Article in English | MEDLINE | ID: mdl-30998606

ABSTRACT

OBJECTIVES: To determine whether circulating endothelial cells from septic shock patients and from nonseptic shock patients are transformed in activated fibroblast by changing the expression level of endothelial and fibrotic proteins, whether the level of the protein expression change is associated with the amount of administered resuscitation fluid, and whether this circulating endothelial cell protein expression change is a biomarker to predict sepsis survival. DESIGN: Prospective study. SETTING: Medical-surgical ICUs in a tertiary care hospital. PATIENTS: Forty-three patients admitted in ICU and 22 healthy volunteers. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Circulating mature endothelial cells and circulating endothelial progenitor cells from septic shock and nonseptic shock patients showed evidence of endothelial fibrosis by changing the endothelial protein expression pattern. The endothelial proteins were downregulated, whereas fibroblast-specific markers were increased. The magnitude of the expression change in endothelial and fibrotic proteins was higher in the septic shock nonsurvivors patients but not in nonseptic shock. Interestingly, the decrease in the endothelial protein expression was correlated with the administered resuscitation fluid better than the Acute Physiology and Chronic Health Evaluation II and Sequential Organ Failure Assessment scores in the septic shock nonsurvivors patients but not in nonseptic shock. Notably, the significant difference between endothelial and fibrotic protein expression indicated a nonsurvival outcome in septic shock but not in nonseptic shock patients. Remarkably, area under the receiver operating characteristic curve analysis showed that endothelial protein expression levels predicted the survival outcome better than the Acute Physiology and Chronic Health Evaluation II and Sequential Organ Failure Assessment scores in septic shock but not in nonseptic shock patients. CONCLUSIONS: Circulating endothelial cells from septic shock patients are acutely converted into fibroblasts. Endothelial and fibrotic protein expression level are associated with resuscitation fluid administration magnitude and can be used as biomarkers for an early survival diagnosis of sepsis.


Subject(s)
Endothelial Cells/metabolism , Fibroblasts/metabolism , Intensive Care Units , Shock, Septic/blood , Shock, Septic/mortality , APACHE , Antigens, CD/biosynthesis , Biomarkers , Cadherins/biosynthesis , Female , Fibrosis , Humans , Male , Organ Dysfunction Scores , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis , Prospective Studies , ROC Curve , Shock, Septic/physiopathology , Stem Cells/metabolism , Tertiary Care Centers
17.
Front Microbiol ; 10: 104, 2019.
Article in English | MEDLINE | ID: mdl-30778340

ABSTRACT

Outer membrane vesicles (OMVs) are nano-sized proteoliposomes discharged from the cell envelope of Gram-negative bacteria. OMVs normally contain toxins, enzymes and other factors, and are used as vehicles in a process that has been considered a generalized, evolutionarily conserved delivery system among bacteria. Furthermore, OMVs can be used in biotechnological applications that require delivery of biomolecules, such as vaccines, remarking the importance of their study. Although it is known that Salmonella enterica serovar Typhi (S. Typhi), the etiological agent of typhoid fever in humans, delivers toxins (e.g., HlyE) via OMVs, there are no reports identifying genetic determinants of the OMV biogenesis in this serovar. In the present work, and with the aim to identify genes participating in OMV biogenesis in S. Typhi, we screened 15,000 random insertion mutants for increased HlyE secretion. We found 9 S. Typhi genes (generically called zzz genes) determining an increased HlyE secretion that were also involved in OMV biogenesis. The genes corresponded to ompA, nlpI, and tolR (envelope stability), rfaE and waaC (LPS synthesis), yipP (envC), mrcB (synthesis and remodeling of peptidoglycan), degS (stress sensor serine endopeptidase) and hns (global transcriptional regulator). We found that S. Typhi Δzzz mutants were prone to secrete periplasmic, functional proteins with a relatively good envelope integrity. In addition, we showed that zzz genes participate in OMV biogenesis, modulating different properties such as OMV size distribution, OMV yield and OMV protein cargo.

18.
Front Chem ; 6: 345, 2018.
Article in English | MEDLINE | ID: mdl-30211148

ABSTRACT

In this study, we explored new properties of the bioinspired pyridine benzimidazole compound B2 (2,4-di-tert-butyl-6-(3H-imidazo[4,5-c]pyridine-2-yl)phenol) regarding its potential use as a differential biomarker. For that, we performed 1D 1HNMR (TOCSY), UV-Vis absorption spectra in different organic solvents, voltammetry profile (including a scan-rate study), and TD-DFT calculations that including NBO analyses, to provide valuable information about B2 structure and luminescence. In our study, we found that the B2 structure is highly stable, where the presence of an intramolecular hydrogen bond (IHB) seems to have a crucial role in the stability of luminescence, and its emission can be assigned as fluorescence. In fact, we found that the relatively large Stokes Shift observed for B2 (around 175 nm) may be attributed to the stability of the B2 geometry and the strength of its IHB. On the other hand, we determined that B2 is biocompatible by cytotoxicity experiments in HeLa cells, an epithelial cell line. Furthermore, in cellular assays we found that B2 could be internalized by passive diffusion in absence of artificial permeabilization at short incubation times (15 min to 30 min). Fluorescence microscopy studies confirmed that B2 accumulates in the endoplasmic reticulum (ER) and Golgi apparatus, two organelles involved in the secretory pathway. Finally, we determined that B2 exhibited no noticeable blinking or bleaching after 1 h of continuous exposure. Thus, B2 provides a biocompatible, rapid, simple, and efficient way to fluorescently label particular organelles, producing similar results to that obtained with other well-established but more complex methods.

19.
PLoS One ; 13(9): e0203497, 2018.
Article in English | MEDLINE | ID: mdl-30180204

ABSTRACT

Salmonella enterica Serovar Typhimurium (S. Typhimurium) is an intracellular bacterium that overcomes host immune system barriers for successful infection. The bacterium colonizes the proximal small intestine, penetrates the epithelial layer, and is engulfed by macrophages and neutrophils. Intracellularly, S. Typhimurium encounters highly toxic reactive oxygen species including hydrogen peroxide and hypochlorous acid. The molecular mechanisms of Salmonella resistance to intracellular oxidative stress is not completely understood. The ArcAB two-component system is a global regulatory system that responds to oxygen. In this work, we show that the ArcA response regulator participates in Salmonella adaptation to changing oxygen levels and is also involved in promoting intracellular survival in macrophages and neutrophils, enabling S. Typhimurium to successfully establish a systemic infection.


Subject(s)
Bacterial Proteins/metabolism , Microbial Viability , Reactive Oxygen Species/metabolism , Salmonella Infections/metabolism , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Animals , Bacterial Proteins/genetics , Female , Humans , Mice , RAW 264.7 Cells , Salmonella Infections/genetics , Salmonella Infections/pathology , Salmonella typhimurium/genetics
20.
J Rheumatol ; 44(6): 799-805, 2017 06.
Article in English | MEDLINE | ID: mdl-28365584

ABSTRACT

OBJECTIVE: To examine the clinical correlates and survival in patients with antifibrillarin antibodies (AFA) in a large international study population consisting of well-characterized systemic sclerosis (SSc) cohorts from Canada, Australia, and the United States. METHODS: Baseline clinical data from the prospective cohorts (Canadian Scleroderma Research Group, the Australian Scleroderma Cohort Study, and the American Genetics versus Environment in Scleroderma Outcome Study) were investigated. Clinical variables were harmonized and sera were tested for AFA using a commercially available SSc profile line immunoassay, regardless of the immunofluorescence staining pattern. Association of demographic and clinical features with AFA was investigated by logistic or linear regression. Further, a survival analysis was performed by Cox regression analysis. RESULTS: A total of 1506 patients with SSc with complete serological profiles were included in the study. Fifty-two patients (3.5%) had antibodies detected against fibrillarin. Patients of African descent and Native North American ethnicity were more likely to be AFA-positive compared with other ethnicities. After adjustment for demographic factors, diffuse involvement, and intestinal bacterial overgrowth requiring antibiotics, gastrointestinal reflux disease showed a trend for association with AFA. Further, AFA positivity was associated with shorter survival independently of demographic factors and disease type (HR 1.76, 95% CI 1.11-2.79, p = 0.016). CONCLUSION: In this large multinational SSc cohort, AFA was associated with Native American ethnicity and was an independent predictor of mortality.


Subject(s)
Autoantibodies/blood , Chromosomal Proteins, Non-Histone/immunology , Scleroderma, Systemic/mortality , Adult , Aged , Autoantibodies/immunology , Female , Humans , Indians, North American , Male , Middle Aged , Prospective Studies , Scleroderma, Systemic/blood , Scleroderma, Systemic/immunology , Survival Analysis , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...