Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Article in English | MEDLINE | ID: mdl-38833313

ABSTRACT

We report the novel clinical presentation of a primary brain neoplasm in a 30-year-old man with a mass-like area in the anteromedial temporal lobe. Histopathological analysis revealed a low-grade neuroepithelial tumor with cytologically abnormal neurons and atypical glial cells within the cerebral cortex. Molecular analysis showed a previously undescribed FGFR2::DLG5 rearrangement. We discuss the clinical significance and molecular implications of this fusion event, shedding light on its potential impact on tumor development and patient prognosis. Additionally, an extensive review places the finding in this case in the context of protein fusions in brain tumors in general and highlights their diverse manifestations, underlying molecular mechanisms, and therapeutic implications.

2.
Cancers (Basel) ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672598

ABSTRACT

Although grading is defined by the highest histological grade observed in a glioma, most high-grade gliomas retain areas with histology reminiscent of their low-grade counterparts. We sought to achieve the following: (i) identify proteins and molecular pathways involved in glioma evolution; and (ii) validate the high mobility group protein B2 (HMGB2) as a key player in tumor progression and as a prognostic/predictive biomarker for diffuse astrocytomas. We performed liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple areas of adult-type astrocytomas and validated our finding in multiplatform-omics studies and high-throughput IHC analysis. LC-MS/MSdetected proteomic signatures characterizing glioma evolution towards higher grades associated with, but not completely dependent, on IDH status. Spatial heterogeneity of diffuse astrocytomas was associated with dysregulation of specific molecular pathways, and HMGB2 was identified as a putative driver of tumor progression, and an early marker of worse overall survival in grades 2 and 3 diffuse gliomas, at least in part regulated by DNA methylation. In grade 4 astrocytomas, HMGB2 expression was strongly associated with proliferative activity and microvascular proliferation. Grounded in proteomic findings, our results showed that HMGB2 expression assessed by IHC detected early signs of tumor progression in grades 2 and 3 astrocytomas, as well as identified GBMs that had a better response to the standard chemoradiation with temozolomide.

3.
Brain Behav Immun ; 119: 333-350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561095

ABSTRACT

Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.


Subject(s)
Animals, Newborn , Brain Stem , Lipopolysaccharides , Neonatal Sepsis , Toll-Like Receptor 1 , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , Mice , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 2/metabolism , Neonatal Sepsis/metabolism , Brain Stem/metabolism , Toll-Like Receptor 1/metabolism , Lipopeptides/pharmacology , Respiration/drug effects , Mice, Inbred C57BL , Neurons/metabolism , Astrocytes/metabolism , Male , Ligands , Microglia/metabolism , Female , Inflammation/metabolism
4.
Neurooncol Adv ; 6(1): vdad140, 2024.
Article in English | MEDLINE | ID: mdl-38405202

ABSTRACT

Background: Glioblastoma is a malignant brain tumor requiring careful clinical monitoring even after primary management. Personalized medicine has suggested the use of various molecular biomarkers as predictors of patient prognosis or factors utilized for clinical decision-making. However, the accessibility of such molecular testing poses a constraint for various institutes requiring identification of low-cost predictive biomarkers to ensure equitable care. Methods: We collected retrospective data from patients seen at Ohio State University, University of Mississippi, Barretos Cancer Hospital (Brazil), and FLENI (Argentina) who were managed for glioblastoma-amounting to 581 patient records documented using REDCap. Patients were evaluated using an unsupervised machine learning approach comprised of dimensionality reduction and eigenvector analysis to visualize the inter-relationship of collected clinical features. Results: We discovered that the serum white blood cell (WBC) count of a patient during baseline planning for treatment was predictive of overall survival with an over 6-month median survival difference between the upper and lower quartiles of WBC count. By utilizing an objective PD-L1 immunohistochemistry quantification algorithm, we were further able to identify an increase in PD-L1 expression in glioblastoma patients with high serum WBC counts. Conclusions: These findings suggest that in a subset of glioblastoma patients the incorporation of WBC count and PD-L1 expression in the brain tumor biopsy as simple biomarkers predicting glioblastoma patient survival. Moreover, machine learning models allow the distillation of complex clinical data sets to uncover novel and meaningful clinical relationships.

5.
Otol Neurotol ; 45(2): e113-e122, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38082472

ABSTRACT

OBJECTIVE: A subset of vestibular schwannomas (VSs), including cystic tumors, have higher postoperative morbidity because of the presence of adhesions between the tumor, facial nerve (FN), and brainstem. We identify tumor microenvironment (TME) biomarkers to better classify these tumors and predict the degree of tumor adherence. STUDY DESIGN: Retrospective case series. SETTING: Tertiary skull base referral center. METHODS: Adult patients with cystic and solid VS matched in tumor size who underwent surgical resection were included. Expressions of seven biomarkers of extracellular matrix remodeling and tumor immune response were quantified via immunohistochemistry. The distribution of CD45+ immune cells was evaluated in intratumoral and perivascular compartments. The degree of tumor adherence was categorized as none, adherent to FN, or adherent to both FN and brainstem. RESULTS: Twenty-eight patients were included. Cystic VSs were significantly more adherent than solid VSs ( p = 0.02). Patients with adherent VS had shorter duration of symptoms and were more likely to undergo subtotal resection. In solid tumors, matrix metalloproteinase (MMP)-2 expression ( p = 0.02) and CD163+ macrophage infiltration ( p = 0.007) were correlated with tumor size. Linear discriminant analyses (LDAs) demonstrated MMP-2, MMP-14, CD80, CD163, and perivascular CD45 to be individually predictive of the degree of tumor adherence (all p < 0.05), with perivascular CD45 being the best independent predictor ( p = 0.005). An LDA model including these biomarkers demonstrated 100% accurate discrimination of all three levels of tumor adherence ( p = 0.04). CONCLUSIONS: Adherent VS have a distinct proinflammatory TME characterized by elevated MMP expression, enrichment of tumor-associated macrophages, and perivascular immune cell infiltration.


Subject(s)
Neuroma, Acoustic , Adult , Humans , Neuroma, Acoustic/surgery , Neuroma, Acoustic/pathology , Biomarkers, Tumor , Retrospective Studies , Tumor Microenvironment , Treatment Outcome , Neurosurgical Procedures
7.
Acta Neuropathol Commun ; 11(1): 192, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049893

ABSTRACT

Post-resection radiologic monitoring to identify areas of new or progressive enhancement concerning for cancer recurrence is critical during patients with glioblastoma follow-up. However, treatment-related pseudoprogression presents with similar imaging features but requires different clinical management. While pathologic diagnosis is the gold standard to differentiate true progression and pseudoprogression, the lack of objective clinical standards and admixed histologic presentation creates the needs to (1) validate the accuracy of current approaches and (2) characterize differences between these entities to objectively differentiate true disease. We demonstrated using an online RNAseq repository of recurrent glioblastoma samples that cancer-immune cell activity levels correlate with heterogenous clinical outcomes in patients. Furthermore, nCounter RNA expression analysis of 48 clinical samples taken from second neurosurgical resection supports that pseudoprogression gene expression pathways are dominated with immune activation, whereas progression is predominated with cell cycle activity. Automated image processing and spatial expression analysis however highlight a failure to apply these broad expressional differences in a subset of cases with clinically challenging admixed histology. Encouragingly, applying unsupervised clustering approaches over our segmented histologic images provides novel understanding of morphologically derived differences between progression and pseudoprogression. Spatially derived data further highlighted polarization of myeloid populations that may underscore the tumorgenicity of novel lesions. These findings not only help provide further clarity of potential targets for pathologists to better assist stratification of progression and pseudoprogression, but also highlight the evolution of tumor-immune microenvironment changes which promote tumor recurrence.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/drug therapy , Disease Progression , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Chemoradiotherapy , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Tumor Microenvironment
8.
Polymers (Basel) ; 15(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139978

ABSTRACT

Biocomposite development, as a sustainable alternative to fossil-derived materials with diverse industrial applications, requires expediting the design process and reducing production costs. Simulation methods offer a solution to these challenges. The main aspects to consider in simulating composite materials successfully include accurately representing microstructure geometry, carefully selecting mesh elements, establishing appropriate boundary conditions representing system forces, utilizing an efficient numerical method to accelerate simulations, and incorporating statistical tools like experimental designs and re-regression models. This study proposes a comprehensive methodology encompassing these aspects. We present the simulation using a numerical homogenization technique based on FEM to analyze the mechanical behavior of a composite material of a polyhydroxybutyrate (PHB) biodegradable matrix reinforced with cylindrical inclusions of flax and kenab. Here, the representative volume element (RVE) considered the geometry, and the numerical homogenization method (NHM) calculated the macro-mechanical behavior of composites. The results were validated using the asymptotic homogenization method (AHM) and experimental data, with error estimations of 0.0019% and 7%, respectively. This model is valuable for predicting longitudinal and transverse elastic moduli, shear modulus, and Poisson's coefficient, emphasizing its significance in composite materials research.

9.
Org Biomol Chem ; 21(42): 8535-8547, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37840474

ABSTRACT

We describe the synthesis of trihydroxylated cyclohexane ß-amino acids from (-)-shikimic acid, in their cis and trans configuration, and the incorporation of the trans isomer into a trans-2-aminocyclohexanecarboxylic acid peptide chain. Subsequently, the hydroxyl groups were partially or totally deprotected. The structural study of the new peptides by FTIR, CD, solution NMR and DFT calculations revealed that they all fold into a 14-helix secondary structure, similarly to the homooligomer of trans-2-aminocyclohexanecarboxylic acid. This means that the high degree of substitution of the cyclohexane ring of the new residue is compatible with the adoption of a stable helical secondary structure and opens opportunities for the design of more elaborate peptidic foldamers with oriented polar substituents at selected positions of the cycloalkane residues.


Subject(s)
Amino Acids , Cyclohexanecarboxylic Acids , Amino Acids/chemistry , Peptides/chemistry , Protein Structure, Secondary
10.
Arch Pathol Lab Med ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37694567

ABSTRACT

CONTEXT.­: In 2021 the World Health Organization distributed a new classification of central nervous system tumors that incorporated modern testing modalities in the diagnosis. Although universally accepted as a scientifically superior system, this schema has created controversy because its deployment globally is challenging in the best of circumstances and impossible in resource-poor health care ecosystems. Compounding this problem is the significant challenge that neuropathologists with expertise in central nervous system tumors are rare. OBJECTIVE.­: To demonstrate diagnostic use of simple unsupervised machine learning techniques using publicly available data sets. I also discuss some potential solutions to the deployment of neuropathology classification in health care ecosystems burdened by this classification schema. DATA SOURCES.­: The Cancer Genome Atlas RNA sequencing data from low-grade and high-grade gliomas. CONCLUSIONS.­: Methylation-based classification will be unable to solve all diagnostic problems in neuropathology. Information theory quantifications generate focused workflows in pathology, resulting in prevention of ordering unnecessary tests and identifying biomarkers that facilitate diagnosis.

11.
J Dairy Sci ; 106(7): 4533-4544, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37225584

ABSTRACT

The continuously increasing demand of lactic acid opens a window for the integration of membrane technology in the dairy industry, improving the sustainability by avoiding the use of large amounts of chemicals and waste generation. Lactic acid recovery from fermentation broth without precipitation has been studied by numerous processes. In this work, a commercial membrane with high lactose rejection and a moderate lactic acid rejection, enabling a permselectivity up to 40%, is sought to perform the simultaneous removal of lactic acid and lactose separation from the acidified sweet whey from mozzarella cheese production in a single stage. The AFC30 membrane of the thin film composite nanofiltration (NF) type was selected because of its high negative charge, low isoelectric point, and divalent ion rejection, as well as a lactose rejection higher than 98% and a lactic acid rejection lower than 37%, at pH 3.5, to minimize the need of additional separation steps. The experimental lactic acid rejection was evaluated at varying feed concentration, pressure, temperature, and flow rate. As the dissociation degree of lactic acid is negligible in industrially simulated conditions, the performance of this NF membrane was validated by the irreversible thermodynamic Kedem-Katchalsky and Spiegler-Kedem models, with the best prediction in the latter case, with the parameter values: Lp = 3.24 ± 0.87 L × m-2 × h-1 × bar-1 and = 15.06 ± 3.17 L × m-2 × h-1, and σ = 0.45 ± 0.03. The results obtained in this work open the way for the up-scaling of membrane technology on the valorization of dairy effluents by simplifying the operation process and the model prediction and the choice of the membrane.


Subject(s)
Cheese , Whey , Animals , Lactose , Lactic Acid , Membranes, Artificial , Whey Proteins
12.
Nanoscale ; 15(21): 9390-9402, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37184508

ABSTRACT

DNA-modified nanoparticles enable DNA sensing and therapeutics in nanomedicine and are also crucial for nanoparticle self-assembly with DNA-based materials. However, methods to conjugate DNA to nanoparticle surfaces are limited, inefficient, and lack control. Inspired by DNA tile nanotechnology, we demonstrate a new approach to nanoparticle modification based on electrostatic attraction between negatively charged DNA tiles and positively charged nanoparticles. This approach does not disrupt nanoparticle surfaces and leverages the programmability of DNA nanotechnology to control DNA presentation. We demonstrated this approach using a vareity of nanoparticles, including polymeric micelles, polystyrene beads, gold nanoparticles, and superparamagnetic iron oxide nanoparticles with sizes ranging from 5-20 nm in diameter. DNA cage formation was confirmed through transmission electron microscopy (TEM), neutralization of zeta potential, and a series of fluorescence experiments. DNA cages present "handle" sequences that can be used for reversible target attachment or self-assembly. Handle functionality was verified in solution, at the solid-liquid interface, and inside fixed cells, corresponding to applications in biosensing, DNA microarrays, and erasable immunocytochemistry. These experiments demonstrate the versatility of the electrostatic DNA caging approach and provide a new pathway to nanoparticle modification with DNA that will empower further applications of these materials in medicine and materials science.


Subject(s)
Metal Nanoparticles , Nanoparticles , Static Electricity , Gold , DNA , Nanotechnology
13.
J Mater Chem B ; 11(24): 5442-5459, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37159233

ABSTRACT

Glioblastoma (GB) is an astrocytic brain tumour with a low survival rate, partly because of its highly invasive nature. The GB tumour microenvironment (TME) includes its extracellular matrix (ECM), a variety of brain cell types, unique anatomical structures, and local mechanical cues. As such, researchers have attempted to create biomaterials and culture models that mimic features of TME complexity. Hydrogel materials have been particularly popular because they enable 3D cell culture and mimic TME mechanical properites and chemical composition. Here, we used a 3D collagen I-hyaluronic acid hydrogel material to explore interactions between GB cells and astrocytes, the normal cell type from which GB likely derives. We demonstrate three different spheroid culture configurations, including GB multi-spheres (i.e., GB and astrocyte cells in spheroid co-culture), GB-only mono-spheres cultured with astrocyte-conditioned media, and GB-only mono-spheres cultured with dispersed live or fixed astrocytes. Using U87 and LN229 GB cell lines and primary human astrocytes, we investigated material and experiment variability. We then used time-lapse fluorescence microscopy to measure invasive potential by characterizing the sphere size, migration capacity, and weight-averaged migration distance in these hydrogels. Finally, we developed methods to extract RNA for gene expression analysis from cells cultured in hydrogels. U87 and LN229 cells displayed different migration behaviors. U87 migration occurred primarily as single cells and was reduced with higher numbers of astrocytes in both multi-sphere and mono-sphere plus dispersed astrocyte cultures. In contrast, LN229 migration exhibited features of collective migration and was increased in monosphere plus dispersed astrocyte cultures. Gene expression studies indicated that the most differentially expressed genes in these co-cultures were CA9, HLA-DQA1, TMPRSS2, FPR1, OAS2, and KLRD1. Most differentially expressed genes were related to immune response, inflammation, and cytokine signalling, with greater influence on U87 than LN229. These data show that 3D in vitro hydrogel co-culture models can be used to reveal cell line specific differences in migration and to study differential GB-astrocyte crosstalk.


Subject(s)
Glioblastoma , Humans , Glioblastoma/pathology , Astrocytes , Hydrogels/chemistry , Hyaluronic Acid/chemistry , Cell Line, Tumor , Cell Movement , Collagen/metabolism , Tumor Microenvironment
14.
Res Sq ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131745

ABSTRACT

Purpose: Glioblastoma is a malignant brain tumor requiring careful clinical monitoring even after primary management. Personalized medicine has suggested use of various molecular biomarkers as predictors of patient prognosis or factors utilized for clinical decision making. However, the accessibility of such molecular testing poses a constraint for various institutes requiring identification of low-cost predictive biomarkers to ensure equitable care. Methods: We collected retrospective data from patients seen at Ohio State University, University of Mississippi, Barretos Cancer Hospital (Brazil), and FLENI (Argentina) who were managed for glioblastoma-amounting to nearly 600 patient records documented using REDCap. Patients were evaluated using an unsupervised machine learning approach comprised of dimensionality reduction and eigenvector analysis to visualize the inter-relationship of collected clinical features. Results: We discovered that white blood cell count of a patient during baseline planning for treatment was predictive of overall survival with an over 6-month median survival difference between the upper and lower quartiles of white blood cell count. By utilizing an objective PDL-1 immunohistochemistry quantification algorithm, we were further able to identify an increase in PDL-1 expression in glioblastoma patients with high white blood cell counts. Conclusion: These findings suggest that in a subset of glioblastoma patients the incorporation of white blood cell count and PDL-1 expression in the brain tumor biopsy as simple biomarkers predicting glioblastoma patient survival. Moreover, use of machine learning models allows us to visualize complex clinical datasets to uncover novel clinical relationships.

15.
PLoS One ; 18(4): e0283415, 2023.
Article in English | MEDLINE | ID: mdl-37018227

ABSTRACT

Utilizing geochemical analysis, this study identifies the sources of European brass used in the casting of the renowned Benin Bronzes, produced by the Edo people of Nigeria. It is commonly believed that distinctive brass rings known as "manillas", used as currency in the European trade in West Africa, also served as a metal source for the making of the Bronzes. However, prior to the current study, no research had conclusively connected the Benin artworks and the European manillas. For this research, manillas from shipwrecks in African, American and European waters dating between the 16th and 19th Century were analysed using ICP-MS analysis. Comparing trace elements and lead isotope ratios of manillas and Benin Bronzes identifies Germany as the principal source of the manillas used in the West African trade between the 15th and 18th centuries before British industries took over the brass trade in the late 18th century.

16.
Meat Sci ; 200: 109166, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996731

ABSTRACT

The addition of probiotic bacteria to a meat batter allows the development of functional fermented sausages. The aim of this work was to study the effect of microencapsulated Lactiplantibacillus plantarum BFL (EP) and as free cells (FP) on microbiological, physicochemical, and sensory parameters of fermented sausages during the drying stage and on the product ready for consumption. The microencapsulation of L. plantarum BFL did not improve its viability during the drying stage. In addition, sausages inoculated with L. plantarum BFL (FP and EP) caused lower residual nitrites values, pH values and Escherichia coli counts than the Control (C). However, only the presence of free cells of L. plantarum BFL (FP) caused a decrease in the Enterobacteriaceae and mannitol salt-positive Staphylococcus counts. In the sensory analysis, no significant differences were found in the acceptability of the different sausages. However, the acidity in probiotic sausages (FP and EP) was an attribute that consumers highlighted. The probiotic L. plantarum BFL could adapt and survive at high doses in the matrix of an industrial fermented sausage. Therefore, its use could represent a strategy both for biocontrol of pathogens and for the development of functional meat products.


Subject(s)
Food Microbiology , Meat Products , Probiotics , Fermentation , Meat Products/analysis , Methylcellulose , Probiotics/analysis
17.
Front Mol Biosci ; 10: 1111598, 2023.
Article in English | MEDLINE | ID: mdl-36762206

ABSTRACT

Irreversible inhibition of the enzyme type I dehydroquinase (DHQ1), a promising target for anti-virulence drug development, has been explored by enhancing the electrophilicity of specific positions of the ligand towards covalent lysine modification. For ligand design, we made use of the advantages offered by the intrinsic acid-base properties of the amino substituents introduced in the quinate scaffold, namely compounds 6-7 (R configuration at C3), to generate a potential leaving group, as well as the recognition pattern of the enzyme. The reactivity of the C2-C3 bond (Re face) in the scaffold was also explored using compound 8. The results of the present study show that replacement of the C3 hydroxy group of (-)-quinic acid by a hydroxyamino substituent (compound 6) provides a time-dependent irreversible inhibitor, while compound 7, in which the latter functionality was substituted by an amino group, and the introduction of an oxirane ring at C2-C3 bond, compound 8, do not allow covalent modification of the enzyme. These outcomes were supported by resolution of the crystal structures of DHQ1 from Staphylococcus aureus (Sa-DHQ1) and Salmonella typhi (St-DHQ1) chemically modified by 6 at a resolution of 1.65 and 1.90 Å, respectively, and of St-DHQ1 in the complex with 8 (1.55 Å). The combination of these structural studies with extensive molecular dynamics simulation studies allowed us to understand the molecular basis of the type of inhibition observed. This study is a good example of the importance of achieving the correct geometry between the reactive center of the ligand (electrophile) and the enzyme nucleophile (lysine residue) to allow selective covalent modification. The outcomes obtained with the hydroxyamino derivative 6 also open up new possibilities in the design of irreversible inhibitors based on the use of amino substituents.

18.
Vet Clin Pathol ; 52(1): 102-107, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35751153

ABSTRACT

A 16-year-old female spayed domestic shorthaired cat was examined for lameness and a mass on the fourth digit of the right hindlimb. Cytologic examination of an aspirate of the mass revealed large discrete cells admixed with low numbers of well-granulated mast cells. The discrete cells contained single to many variably sized light pink to purple granules in their cytoplasm and had pleomorphic nuclei, with intranuclear cytoplasmic inclusions. Karyomegalic, binucleated and multinucleated cells were seen. Histologic examination of formalin-fixed sections of the excised mass showed a mildly infiltrative, unencapsulated, multinodular dermal mass that extended into the subcutis and consisted of similar discrete cells. On immunohistochemical staining, the tumor cells expressed ionized calcium-binding adapter molecule 1 (Iba1) and CD18. The tumor cells did not express CD3, CD20, CD117, pancytokeratin (AE1/AE3), melanoma antigen (Melan-A), multiple myeloma oncogene-1 (MUM1), melanoma-associated antigen (PNL-2), and S-100. Low numbers of tumor cells expressed CD204 and protein gene product 9.5 (PGP9.5). Granules were variably positive for Periodic-acid Schiff (PAS) and Alcian blue. On transmission electron microscopy, the cells contained filopodia, abundant endoplasmic reticulum, and moderate numbers of low-density membrane-bound granules. This case documents a previously undescribed granular variant of a histiocytic tumor in a cat.


Subject(s)
Hematologic Neoplasms , Melanoma , Female , Animals , Melanoma/veterinary , Hematologic Neoplasms/veterinary , Microscopy, Electron, Transmission/veterinary , Toes
19.
Brain Behav Immun ; 108: 221-232, 2023 02.
Article in English | MEDLINE | ID: mdl-36494047

ABSTRACT

Chemotherapy remains a mainstay in the treatment of many types of cancer even though it is associated with debilitating behavioral side effects referred to as "chemobrain," including difficulty concentrating and memory impairment. The predominant hypothesis in the field is that systemic inflammation drives these cognitive impairments, although the brain mechanisms by which this occurs remain poorly understood. Here, we hypothesized that microglia are activated by chemotherapy and drive chemotherapy-associated cognitive impairments. To test this hypothesis, we treated female C57BL/6 mice with a clinically-relevant regimen of a common chemotherapeutic, paclitaxel (6 i.p. doses at 30 mg/kg), which impairs memory of an aversive stimulus as assessed via a contextual fear conditioning (CFC) paradigm. Paclitaxel increased the percent area of IBA1 staining in the dentate gyrus of the hippocampus. Moreover, using a machine learning random forest classifier we identified immunohistochemical features of reactive microglia in multiple hippocampal subregions that were distinct between vehicle- and paclitaxel-treated mice. Paclitaxel treatment also increased gene expression of inflammatory cytokines in a microglia-enriched population of cells from mice. Lastly, a selective inhibitor of colony stimulating factor 1 receptor, PLX5622, was employed to deplete microglia and then assess CFC performance following paclitaxel treatment. PLX5622 significantly reduced hippocampal gene expression of paclitaxel-induced proinflammatory cytokines and restored memory, suggesting that microglia play a critical role in the development of chemotherapy-associated neuroinflammation and cognitive impairments. This work provides critical evidence that microglia drive paclitaxel-associated cognitive impairments, a key mechanistic detail for determining preventative and intervention strategies for these burdensome side effects.


Subject(s)
Cognitive Dysfunction , Microglia , Mice , Female , Animals , Microglia/metabolism , Paclitaxel/adverse effects , Mice, Inbred C57BL , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cytokines/metabolism , Hippocampus/metabolism
20.
Elife ; 112022 11 17.
Article in English | MEDLINE | ID: mdl-36394266

ABSTRACT

Mutations in the transcription factor Phox2b cause congenital central hypoventilation syndrome (CCHS). The syndrome is characterized by hypoventilation and inability to regulate breathing to maintain adequate O2 and CO2 levels. The mechanism by which CCHS impact respiratory control is incompletely understood, and even less is known about the impact of the non-polyalanine repeat expansion mutations (NPARM) form. Our goal was to investigate the extent by which NPARM Phox2b mutation affect (a) respiratory rhythm; (b) ventilatory responses to hypercapnia (HCVR) and hypoxia (HVR); and (c) number of chemosensitive neurons in mice. We used a transgenic mouse line carrying a conditional Phox2bΔ8 mutation (same found in humans with NPARM CCHS). We crossed them with Atoh1cre mice to introduce mutation in regions involved with respiratory function and central chemoreflex control. Ventilation was measured by plethysmograph during neonatal and adult life. In room air, mutation in neonates and adult did not greatly impact basal ventilation. However, Phox2bΔ8, Atoh1cre increased breath irregularity in adults. The HVR and HCVR were impaired in neonates. The HVR, but not HCVR, was still partially compromised in adults. The mutation reduced the number of Phox2b+/TH--expressing neurons as well as the number of fos-activated cells within the ventral parafacial region (also named retrotrapezoid nucleus [RTN] region) induced by hypercapnia. Our data indicates that Phox2bΔ8 mutation in Atoh1-expressing cells impaired RTN neurons, as well as chemoreflex under hypoxia and hypercapnia specially early in life. This study provided new evidence for mechanisms related to NPARM form of CCHS neuropathology.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Homeodomain Proteins , Hypercapnia , Sleep Apnea, Central , Animals , Humans , Mice , Basic Helix-Loop-Helix Transcription Factors/genetics , Hypercapnia/genetics , Hypoxia/genetics , Mice, Transgenic , Mutation , Sleep Apnea, Central/genetics , Homeodomain Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...