Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Physiol Rep ; 12(8): e15993, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627215

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health issue with a worldwide prevalence of 30%-32%. In animal models, voluntary exercise may be an alternative to forced physical activity, avoiding stress, potential injuries, and being logistically simpler. Here, we assessed voluntary exercise (Vex) in Sprague-Dawley rats fed a high-fat, high-cholesterol diet for 18 weeks to induce MASLD. We quantified workload (speed and distance) using exercise wheels and evaluated energy expenditure using calorimetric cages. MASLD progression was assessed using circulating and hepatic biochemical and gene markers of steatosis, inflammation, and fibrosis. The animals ran an average of 301 km during the study period, with the average daily distance peaking at 4937 m/day during Weeks 3-4 before decreasing to 757 m/day by the end of the study. Rats exposed to Vex showed no improvement in any of the MASLD-associated features, such as steatosis, inflammation, or fibrosis. Rats exposed to Vex exhibited a higher total energy expenditure during the night phase (+0.35 kcal/h; p = 0.003) without resulting in any effect on body composition. We conclude that, in our experimental conditions, Vex failed to prevent MASLD progression in male Sprague-Dawley rats exposed to a high-fat high-cholesterol diet for 18 weeks.


Subject(s)
Fatty Liver , Metabolic Diseases , Rats , Male , Animals , Rats, Sprague-Dawley , Fatty Liver/metabolism , Diet, High-Fat/adverse effects , Cholesterol , Inflammation , Exercise , Fibrosis , Disease Progression
2.
Front Cardiovasc Med ; 11: 1342388, 2024.
Article in English | MEDLINE | ID: mdl-38317864

ABSTRACT

Introduction: Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods: C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results: The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion: The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.

3.
Nutrients ; 15(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38140315

ABSTRACT

Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide, and hypercholesterolemia is a central risk factor for atherosclerosis. This study evaluated the effects of Totum-070, a plant-based polyphenol-rich supplement, in hamsters with high-fat diet (HFD)-induced dyslipidemia. The molecular mechanisms of action were explored using human Caco2 enterocytes. Totum-070 supplementation reduced the total cholesterol (-41%), non-HDL cholesterol (-47%), and triglycerides (-46%) in a dose-dependent manner, compared with HFD. HFD-induced hepatic steatosis was also significantly decreased by Totum-070, an effect associated with the reduction in various lipid and inflammatory gene expression. Upon challenging with olive oil gavage, the post-prandial triglyceride levels were strongly reduced. The sterol excretion in the feces was increased in the HFD-Totum-070 groups compared with the HFD group and associated with reduction of intestinal cholesterol absorption. These effects were confirmed in the Caco2 cells, where incubation with Totum-070 inhibited cholesterol uptake and apolipoprotein B secretion. Furthermore, a microbiota composition analysis revealed a strong effect of Totum-070 on the alpha and beta diversity of bacterial species and a significant decrease in the Firmicutes to Bacteroidetes ratio. Altogether, our findings indicate that Totum-070 lowers hypercholesterolemia by reducing intestinal cholesterol absorption, suggesting that its use as dietary supplement may be explored as a new preventive strategy for cardiovascular diseases.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Hyperlipidemias , Cricetinae , Animals , Humans , Hypercholesterolemia/etiology , Plant Extracts/pharmacology , Plant Extracts/metabolism , Diet, High-Fat/adverse effects , Polyphenols/pharmacology , Polyphenols/metabolism , Caco-2 Cells , Mesocricetus , Cholesterol/metabolism , Hyperlipidemias/metabolism , Triglycerides/metabolism , Atherosclerosis/etiology , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Liver/metabolism
4.
Nutr Res ; 118: 70-84, 2023 10.
Article in English | MEDLINE | ID: mdl-37598559

ABSTRACT

Global prevalence of obesity and type 2 diabetes are rapidly increasing to pandemic proportions. A novel supplement composed of 5 plant extracts from olive leaf, bilberry, artichoke, chrysanthellum, and black pepper was designed to prevent type 2 diabetes development in people at risk. It was previously shown to improve body weight and glucose control in preclinical rodent models, with these effects being accompanied by increased fecal energy excretion and in vitro inhibition of several digestive enzymes. Thus, we hypothesized that, in mice fed a high-fat diet (HFD), a single dose of this botanical supplementation would decrease the responses to oral fat and carbohydrate tolerance tests, and that chronic supplementation would result in increased fecal triglyceride content. We showed that acute administration in HFD-fed mice (1.452 g/kg body weight) markedly reduced circulating triglycerides following an oral lipid gavage, whereas glycemic responses to various carbohydrate tests were only mildly affected. When incorporated into the food (2.5%) of HFD-fed mice, chronic supplementation prevented body weight gain and improved glucose homeostasis and lipid tolerance. Fecal free fatty acid content, but not triglyceride, was significantly increased in supplemented animals, suggesting reduced lipid absorption in the digestive tract. Congruently, this botanical supplementation downregulated several genes associated with fatty acid transport whose expression was increased by HFD, principally in the jejunum. This study provides novel insights as for the mode of action behind the antiobesity effect of this plant-based supplementation, in HFD-fed mice.


Subject(s)
Diabetes Mellitus, Type 2 , Plant Extracts , Humans , Animals , Mice , Diet, High-Fat/adverse effects , Polyphenols/pharmacology , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Weight Gain , Body Weight , Triglycerides/metabolism , Nutrients , Carbohydrates , Mice, Inbred C57BL
5.
Nutrients ; 15(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37111121

ABSTRACT

TOTUM-070 is a patented polyphenol-rich blend of five different plant extracts showing separately a latent effect on lipid metabolism and potential synergistic properties. In this study, we investigated the health benefit of such a formula. Using a preclinical model of high fat diet, TOTUM-070 (3 g/kg of body weight) limited the HFD-induced hyperlipemia with a reduction in triglyceride (-32% after 6 weeks; -20.3% after 12 weeks) and non-HDL cholesterol levels (-21% after 6 weeks; -38.4% after 12 weeks). To further investigate such a benefit and its underlying mechanisms in humans, we designed an ex vivo clinical approach to collect the circulating bioactives resulting from TOTUM-070 ingestion and to determine their biological activities on human hepatocytes. Human serum was obtained from healthy subjects before and after intake of TOTUM-070 (4995 mg). The presence of circulating metabolites was assessed by UPLC-MS/MS. Serum containing metabolites was further incubated with hepatocytes cultured in a lipotoxic environment (palmitate, 250 µM). RNA sequencing analyses show that lipid metabolism was one of the most impacted processes. Using histologic, proteomic, and enzymatic assays, the effects of human TOTUM-070 bioactives on hepatocyte metabolism were characterized by (1) the inhibition of lipid storage, including both (2) triglycerides (-41%, p < 0.001) and (3) cholesterol (-50%, p < 0.001) intracellular content, (4) a reduced de novo cholesterol synthesis (HMG-CoA reductase activity -44%, p < 0.001), and (5) a lowered fatty acid synthase protein level (p < 0.001). Altogether, these data support the beneficial impact of TOTUM-070 on lipid metabolism and provide new biochemical insights in human mechanisms occurring in liver cells.


Subject(s)
Lipid Metabolism , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/metabolism , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry , Hepatocytes , Cholesterol , Triglycerides , Diet, High-Fat , Liver/metabolism
6.
Arch Sex Behav ; 52(5): 2205-2213, 2023 07.
Article in English | MEDLINE | ID: mdl-37069467

ABSTRACT

Factors associated with suicidal ideation in the gender dysphoria population are not completely understood. This high-risk population is more likely to suffer stressful events such as assault or employment discrimination. This study aimed to determine the association of stressful events and social support on suicidal ideation in gender dysphoria and to analyze the moderator effect of social support in relation to stressful events and suicidal ideation. A cross-sectional design was used in a clinical sample attending a public gender identity unit in Spain that consisted of 204 individuals (51.7% birth-assigned males and 48.3% birth-assigned females), aged between 13 and 59 (M = 27.95 years, SD = 9.58). A Structured Clinical Interview, a list of 16 stressful events, and a functional social support questionnaire (Duke-UNC-11) were used during the initial visits to the unit. The data were collected between 2011 and 2012. A total of 50.1% of the sample have had suicidal ideation. The following stressful events were associated with suicidal ideation: homelessness, eviction from home, and having suffered from physical or verbal aggression. Also, there was an inverse relation between perceived social support and suicidal ideation. There was a statistically significant interaction between a specific stressful event (eviction) and perceived social support. The study suggests that the promotion of safer environments could be related to lower suicidal ideation and that networks that provide social support could buffer the association between specific stressful events and suicidal ideation.


Subject(s)
Gender Dysphoria , Suicidal Ideation , Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Cross-Sectional Studies , Gender Identity , Social Support , Risk Factors
7.
Int J Mol Sci ; 24(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36835060

ABSTRACT

Controlling post-prandial hyperglycemia and hyperlipidemia, particularly by regulating the activity of digestive enzymes, allows managing type 2 diabetes and obesity. The aim of this study was to assess the effects of TOTUM-63, a formulation of five plant extracts (Olea europaea L., Cynara scolymus L., Chrysanthellum indicum subsp. afroamericanum B.L.Turner, Vaccinium myrtillus L., and Piper nigrum L.), on enzymes involved in carbohydrate and lipid absorption. First, in vitro inhibition assays were performed by targeting three enzymes: α-glucosidase, α-amylase, and lipase. Then, kinetic studies and binding affinity determinations by fluorescence spectrum changes and microscale thermophoresis were performed. The in vitro assays showed that TOTUM-63 inhibited all three digestive enzymes, particularly α-glucosidase (IC50 of 13.1 µg/mL). Mechanistic studies on α-glucosidase inhibition by TOTUM-63 and molecular interaction experiments indicated a mixed (full) inhibition mechanism, and higher affinity for α-glucosidase than acarbose, the reference α-glucosidase inhibitor. Lastly, in vivo data using leptin receptor-deficient (db/db) mice, a model of obesity and type 2 diabetes, indicated that TOTUM-63 might prevent the increase in fasting glycemia and glycated hemoglobin (HbA1c) levels over time, compared with the untreated group. These results show that TOTUM-63 is a promising new approach for type 2 diabetes management via α-glucosidase inhibition.


Subject(s)
Diabetes Mellitus, Type 2 , Glycoside Hydrolase Inhibitors , Plant Extracts , alpha-Glucosidases , Animals , Mice , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Kinetics , Lipase/metabolism , Obesity , Plant Extracts/pharmacology
8.
Diabetes Obes Metab ; 24(12): 2331-2340, 2022 12.
Article in English | MEDLINE | ID: mdl-35837981

ABSTRACT

AIM: The plant-based polyphenol-rich extract TOTUM-63 improves glucose homeostasis in various preclinical models of obesity and type 2 diabetes (T2D). A pilot exploratory study showed that TOTUM-63 has good safety and tolerability profiles, and beneficial effects on postprandial glucose control in healthy individuals with overweight. The aim of this study was to assess the effects of TOTUM-63 on glycaemic control in individuals with prediabetes or early stage newly-diagnosed T2D (which does not require pharmacological treatment). MATERIALS AND METHODS: This study was a multicentre, randomized, double-blind, placebo-controlled trial. Individuals with prediabetes or early stage newly-diagnosed T2D and with overweight/abdominal obesity received TOTUM-63 (5 g/day) or placebo for 6 months. The primary outcome was the change in fasting blood glucose. RESULTS: Fifty-one participants (age: 57.1 ± 10 years; body mass index: 31.3 ± 5.7 kg.m2 ; 35 women and 16 men) completed the study (n = 38 TOTUM-63, n = 13 placebo). After 6 months, blood glucose concentration after fasting and after the 2-h oral glucose tolerance test was reduced in the TOTUM-63-treated group compared with the placebo group (placebo-corrected difference between baseline and month 6: -0.71 mmol/L, p < .05, and -1.93 mmol/L, p < .05, respectively). TOTUM-63 was safe and well tolerated and significantly reduced body weight gain (-1.9 kg; p < .05), waist circumference (-4.5 cm; p < .001), circulating triglycerides (-0.54 mmol/L; p < .01) and low-density lipoprotein-cholesterol (-0.38 mmol/L; p < .05) compared with placebo. CONCLUSIONS: TOTUM-63 lowered fasting blood glucose in participants with impaired fasting glycaemia and glucose intolerance. Moreover, TOTUM-63 showed a good safety and tolerability profile and improved several metabolic syndrome features. Therefore, TOTUM-63 is a promising candidate for T2D prevention.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Male , Female , Humans , Middle Aged , Aged , Prediabetic State/diagnosis , Prediabetic State/drug therapy , Blood Glucose/metabolism , Polyphenols/therapeutic use , Glycemic Control , Overweight/complications , Overweight/drug therapy , Plant Extracts/therapeutic use , Double-Blind Method , Obesity/complications , Obesity/drug therapy
9.
Nutr Metab Cardiovasc Dis ; 32(7): 1797-1807, 2022 07.
Article in English | MEDLINE | ID: mdl-35618560

ABSTRACT

BACKGROUND AND AIMS: TOTUM-63, a fibre and polyphenol rich plant-based composition, has been demonstrated to significantly improve body weight and glucose homeostasis in animal models of obesity. Our study aimed at exploring whether the mechanisms include modulation of gut (glucose-dependent insulinotropic peptide (GIP), glucagon-like petide-1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY)) and pancreatic (insulin, glucagon) hormones, all important regulators of glucose control, appetite and body weight. METHODS AND RESULTS: Male C57BL/6JRJ mice were assigned to either standard chow (CON), high fat diet (HF, 60% energy from fat) or HF-TOTUM-63 (HF diet 60% supplemented with TOTUM-63 2.7%) for 10 weeks. In vivo glucose homeostasis (oral glucose tolerance test (OGTT), intraperitoneal pyruvate tolerance test (ipPTT)), glucose-induced portal vein hormone concentration, gut hormone gene expression and protein content as well as enteroendocrine cell contents were assessed at the end of the dietary intervention. The present study evidenced that TOTUM-63 reduced food intake, limited weight gain and improved glucose and pyruvate tolerance of HF-fed animals. This was associated with an increase in PYY content in the colon, an altered pattern of PYY secretion between fasted and glucose-stimulated states, and with a significant improvement in the portal vein concentration of GLP-1, insulin and glucagon, but not GIP and CCK, in response to glucose stimulation. CONCLUSION: Overall, these data suggest that TOTUM-63 might have a specific impact on gut L-cells and on the expression and secretion of GLP-1 and PYY incretins, potentially contributing to the reduced food intake, body weight gain and improved glucose homeostasis.


Subject(s)
Glucagon , Plant Extracts/pharmacology , Polyphenols , Animals , Blood Glucose/metabolism , Body Weight , Diet, High-Fat , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1/metabolism , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Peptide YY , Polyphenols/pharmacology , Pyruvates , Weight Gain
11.
Nutrients ; 13(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066988

ABSTRACT

Obesity and prediabetes are the two strongest risk factors of type 2 diabetes. It has been reported that TOTUM-63, a polyphenol-rich plant extract, has beneficial effects on body weight (BW) and insulin resistance in mice fed a high fat diet (HFD). The study aim was to determine whether high-intensity interval training (HIIT) and/or TOTUM-63 supplementation improved body composition and glycemic control and gut microbiota composition in a Western diet-induced obesity rat model. Wistar rats received a standard diet (CTRL; control; n = 12) or HFD (HFD; n = 48) for 16 weeks. Then, HFD rats were divided in four groups: HFD, HFD + TOTUM-63 (T63), HFD + HIIT (HIIT), and HFD + HIIT +T63 (HIIT + T63). Training was performed 4 days/week for 12 weeks. TOTUM-63 was included in diet composition (2%). The HIIT + T63 combination significantly limited BW gain, without any energy intake modulation, and improved glycemic control. BW variation was correlated with increased α-diversity of the colon mucosa microbiota in the HIIT + T63 group. Moreover, the relative abundance of Anaeroplasma, Christensenellaceae and Oscillospira was higher in the HIIT + T63 group. Altogether, these results suggest that the HIIT and TOTUM-63 combination could be proposed for the management of obesity and prediabetes.


Subject(s)
Dietary Supplements , High-Intensity Interval Training , Obesity/therapy , Physical Conditioning, Animal/methods , Plant Extracts/administration & dosage , Polyphenols/administration & dosage , Animals , Body Composition/physiology , Combined Modality Therapy , Diabetes Mellitus, Type 2/prevention & control , Diet, High-Fat/adverse effects , Disease Models, Animal , Gastrointestinal Microbiome/physiology , Glycemic Control , Intestinal Mucosa/microbiology , Male , Obesity/etiology , Obesity/physiopathology , Prediabetic State/etiology , Prediabetic State/physiopathology , Prediabetic State/therapy , Rats , Rats, Wistar , Weight Gain/physiology
12.
Int J Obes (Lond) ; 45(9): 2016-2027, 2021 09.
Article in English | MEDLINE | ID: mdl-34079069

ABSTRACT

BACKGROUND/OBJECTIVES: The worldwide prevalence of obesity, metabolic syndrome and type 2 diabetes (T2D) is reaching epidemic proportions that urge the development of new management strategies. Totum-63 is a novel, plant-based polyphenol-rich active principle that has been shown to reduce body weight, fasting glycemia, glucose intolerance, and fatty liver index in obese subjects with prediabetes. Here, we investigated the effects and underlying mechanism(s) of Totum-63 on metabolic homeostasis in insulin-resistant obese mice. METHODS: Male C57Bl6/J mice were fed a high-fat diet for 12 weeks followed by supplementation with Totum-63 for 4 weeks. The effects on whole-body energy and metabolic homeostasis, as well as on tissue-specific inflammation and insulin sensitivity were assessed using a variety of immunometabolic phenotyping tools. RESULTS: Totum-63 decreased body weight and fat mass in obese mice, without affecting lean mass, food intake and locomotor activity, and increased fecal energy excretion and whole-body fatty acid oxidation. Totum-63 reduced fasting plasma glucose, insulin and leptin levels, and improved whole-body insulin sensitivity and peripheral glucose uptake. The expression of insulin receptor ß and the insulin-induced phosphorylation of Akt/PKB were increased in liver, skeletal muscle, white adipose tissue (WAT) and brown adipose tissue (BAT). Hepatic steatosis was also decreased by Totum-63 and associated with a lower expression of genes involved in fatty acid uptake, de novo lipogenesis, inflammation, and fibrosis. Furthermore, a significant reduction in pro-inflammatory macrophages was also observed in epidydimal WAT. Finally, a potent decrease in BAT mass associated with enhanced tissue expression of thermogenic genes was found, suggesting BAT activation by Totum-63. CONCLUSIONS: Our results show that Totum-63 reduces inflammation and improves insulin sensitivity and glucose homeostasis in obese mice through pleiotropic effects on various metabolic organs. Altogether, plant-derived Totum-63 might constitute a promising novel nutritional supplement for alleviating metabolic dysfunctions in obese people with or without T2D.


Subject(s)
Body Composition/drug effects , Inflammation/drug therapy , Obesity/drug therapy , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Body Composition/physiology , Disease Models, Animal , Inflammation/prevention & control , Insulin Resistance/physiology , Mice , Mice, Inbred C57BL/metabolism
13.
Am J Physiol Endocrinol Metab ; 320(6): E1119-E1137, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33938234

ABSTRACT

Global prevalence of type 2 diabetes (T2D) is rising and may affect 700 million people by 2045. Totum-63 is a polyphenol-rich natural composition developed to reduce the risk of T2D. We first investigated the effects of Totum-63 supplementation in high-fat diet (HFD)-fed mice for up to 16 wk and thereafter assessed its safety and efficacy (2.5 g or 5 g per day) in 14 overweight men [mean age 51.5 yr, body mass index (BMI) 27.6 kg·m-2] for 4 wk. In HFD-fed mice, Totum-63 reduced body weight and fat mass gain, whereas lean mass was unchanged. Moreover, fecal energy excretion was higher in Totum-63-supplemented mice, suggesting a reduction of calorie absorption in the digestive tract. In the gut, metagenomic analyses of fecal microbiota revealed a partial restoration of HFD-induced microbial imbalance, as shown by principal coordinate analysis of microbiota composition. HFD-induced increase in HOMA-IR score was delayed in supplemented mice, and insulin response to an oral glucose tolerance test was significantly reduced, suggesting that Totum-63 may prevent HFD-related impairments in glucose homeostasis. Interestingly, these improvements could be linked to restored insulin signaling in subcutaneous adipose tissue and soleus muscle. In the liver, HFD-induced steatosis was reduced by 40% (as shown by triglyceride content). In the subsequent study in men, Totum-63 (5 g·day-1) improved glucose and insulin responses to a high-carbohydrate breakfast test (84% kcal carbohydrates). It was well tolerated, with no clinically significant adverse events reported. Collectively, these data suggest that Totum-63 could improve glucose homeostasis in both HFD-fed mice and overweight individuals, presumably through a multitargeted action on different metabolic organs.NEW & NOTEWORTHY Totum-63 is a novel polyphenol-rich natural composition developed to reduce the risk of T2D. Totum-63 showed beneficial effects on glucose homeostasis in HFD-fed mice, presumably through a multitargeted action on different metabolic organs. Totum-63 was well tolerated in humans and improved postprandial glucose and insulin responses to a high-carbohydrate breakfast test.


Subject(s)
Blood Glucose/drug effects , Hyperglycemia/prevention & control , Plant Extracts/pharmacology , Adult , Animals , Blood Glucose/metabolism , Chrysanthemum/chemistry , Cynara scolymus/chemistry , Glycemic Control/methods , Homeostasis/drug effects , Humans , Hyperglycemia/blood , Hyperglycemia/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Olea/chemistry , Overweight/blood , Overweight/drug therapy , Overweight/metabolism , Pilot Projects , Piper nigrum/chemistry , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Postprandial Period/drug effects , Translational Research, Biomedical , Vaccinium myrtillus/chemistry
14.
Front Mol Biosci ; 8: 635074, 2021.
Article in English | MEDLINE | ID: mdl-34046427

ABSTRACT

Neuromuscular disorders (NMDs) represent an important subset of rare diseases associated with elevated morbidity and mortality whose diagnosis can take years. Here we present a novel approach using systems biology to produce functionally-coherent phenotype clusters that provide insight into the cellular functions and phenotypic patterns underlying NMDs, using the Human Phenotype Ontology as a common framework. Gene and phenotype information was obtained for 424 NMDs in OMIM and 126 NMDs in Orphanet, and 335 and 216 phenotypes were identified as typical for NMDs, respectively. 'Elevated serum creatine kinase' was the most specific to NMDs, in agreement with the clinical test of elevated serum creatinine kinase that is conducted on NMD patients. The approach to obtain co-occurring NMD phenotypes was validated based on co-mention in PubMed abstracts. A total of 231 (OMIM) and 150 (Orphanet) clusters of highly connected co-occurrent NMD phenotypes were obtained. In parallel, a tripartite network based on phenotypes, diseases and genes was used to associate NMD phenotypes with functions, an approach also validated by literature co-mention, with KEGG pathways showing proportionally higher overlap than Gene Ontology and Reactome. Phenotype-function pairs were crossed with the co-occurrent NMD phenotype clusters to obtain 40 (OMIM) and 72 (Orphanet) functionally coherent phenotype clusters. As expected, many of these overlapped with known diseases and confirmed existing knowledge. Other clusters revealed interesting new findings, indicating informative phenotypes for differential diagnosis, providing deeper knowledge of NMDs, and pointing towards specific cell dysfunction caused by pleiotropic genes. This work is an example of reproducible research that i) can help better understand NMDs and support their diagnosis by providing a new tool that exploits existing information to obtain novel clusters of functionally-related phenotypes, and ii) takes us another step towards personalised medicine for NMDs.

15.
Children (Basel) ; 8(2)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671540

ABSTRACT

Due to the exponential increase of autism spectrum disorders' prevalence in Western countries, it is necessary to improve early detection and intervention to enhance developmental milestones. This systematic review identified the most effective screening instrument, which can be used at an early age and which identifies the maximum number of autism cases. We identified several instruments with adequate predictive properties-the Autism Parent Screen for Infants (APSI), Battelle Development Inventory, second edition (BDI-2); Brief Infant-Toddler Social and Emotional Assessment (BITSEA); First Year Inventory (FYI); Infant-Toddler Checklist/Communication and Symbolic Behavior Scales Developmental Profile (ITC/CSBS-DP); Program of Research and Studies on AUTISM (PREAUT-Grid); Checklist for Early Signs of Developmental Disorders (CESDD); Social Attention and Communication Study (SACS); and the Screening Tool for Autism in Toddlers and Young Children (STAT)-that can be applied from 12 months of age in Western countries. The ITC/CSBS-DP has been proposed for universal screening from 12 months of age onwards, complemented by the Modified Checklist for Autism in Toddlers, Revised/Revised with Follow-Up (M-CHAT-R/F), which can be used from 15 months of age onwards. This strategy could improve early detection in at-risk children within the current health system, thus allowing for early intervention.

16.
Transl Psychiatry ; 11(1): 31, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431802

ABSTRACT

The two major subtypes of bipolar disorder (BD), BD-I and BD-II, are distinguished based on the presence of manic or hypomanic episodes. Historically, BD-II was perceived as a less severe form of BD-I. Recent research has challenged this concept of a severity continuum. Studies in large samples of unrelated patients have described clinical and genetic differences between the subtypes. Besides an increased schizophrenia polygenic risk load in BD-I, these studies also observed an increased depression risk load in BD-II patients. The present study assessed whether such clinical and genetic differences are also found in BD patients from multiplex families, which exhibit reduced genetic and environmental heterogeneity. Comparing 252 BD-I and 75 BD-II patients from the Andalusian Bipolar Family (ABiF) study, the clinical course, symptoms during depressive and manic episodes, and psychiatric comorbidities were analyzed. Furthermore, polygenic risk scores (PRS) for BD, schizophrenia, and depression were assessed. BD-I patients not only suffered from more severe symptoms during manic episodes but also more frequently showed incapacity during depressive episodes. A higher BD PRS was significantly associated with suicidal ideation. Moreover, BD-I cases exhibited lower depression PRS. In line with a severity continuum from BD-II to BD-I, our results link BD-I to a more pronounced clinical presentation in both mania and depression and indicate that the polygenic risk load of BD predisposes to more severe disorder characteristics. Nevertheless, our results suggest that the genetic risk burden for depression also shapes disorder presentation and increases the likelihood of BD-II subtype development.


Subject(s)
Bipolar Disorder , Schizophrenia , Bipolar Disorder/genetics , Humans , Multifactorial Inheritance , Risk Factors , Schizophrenia/genetics , Suicidal Ideation
17.
J Comp Neurol ; 529(1): 141-158, 2021 01.
Article in English | MEDLINE | ID: mdl-32427349

ABSTRACT

Pigment epithelium-derived factor (PEDF) is a multifunctional protein which was initially described in the retina, although it is also present in other tissues. It functions as an antioxidant agent promoting neuronal survival. Recently, a PEDF receptor has shown an elevated binding affinity for PEDF. There are no relevant data regarding the distribution of both proteins in the brain, therefore the main goal of this work was to investigate the spatiotemporal presence of PEDF and PEDFR in the adult mouse brain, and to determine the PEDF blood level in mouse and human. The localization of both proteins was analyzed by different experimental methods such as immunohistochemistry, western-blotting, and also by enzyme-linked immunosorbent assay. Differential expression was found in some telencephalic structures and positive signals for both proteins were detected in the cerebellum. The magnitude of the PEDFR labeling pattern was higher than PEDF and included some cortical and subventricular areas. Age-dependent changes in intensity of both protein immunoreactions were found in the cortical and hippocampal areas with greater reactivity between 4 and 8 months of age, whilst others, like the subventricular zones, these differences were more evident for PEDFR. Although ubiquitous presence was not found in the brain for these two proteins, their relevant functions must not be underestimated. It has been described that PEDF plays an important role in neuroprotection and data provided in the present work represents the first extensive study to understand the relevance of these two proteins in specific brain areas.


Subject(s)
Brain Chemistry/physiology , Brain/metabolism , Eye Proteins/analysis , Eye Proteins/biosynthesis , Nerve Growth Factors/analysis , Nerve Growth Factors/biosynthesis , Receptors, Neuropeptide/analysis , Receptors, Neuropeptide/biosynthesis , Serpins/analysis , Serpins/biosynthesis , Adolescent , Adult , Age Factors , Animals , Child , Child, Preschool , Female , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Young Adult
18.
Mol Psychiatry ; 26(4): 1286-1298, 2021 04.
Article in English | MEDLINE | ID: mdl-31712721

ABSTRACT

Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Bipolar Disorder/epidemiology , Bipolar Disorder/genetics , Case-Control Studies , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease/genetics , Humans , Schizophrenia/epidemiology , Schizophrenia/genetics
19.
Cells ; 9(2)2020 01 24.
Article in English | MEDLINE | ID: mdl-31991700

ABSTRACT

A triplet repeat expansion leading to transcriptional silencing of the FMR1 gene results in fragile X syndrome (FXS), which is a common cause of inherited intellectual disability and autism. Phenotypic variation requires personalized treatment approaches and hampers clinical trials in FXS. We searched for microRNA (miRNA) biomarkers for FXS using deep sequencing of urine and identified 28 differentially regulated miRNAs when 219 reliably identified miRNAs were compared in dizygotic twin boys who shared the same environment, but one had an FXS full mutation, and the other carried a premutation allele. The largest increase was found in miR-125a in the FXS sample, and the miR-125a levels were increased in two independent sets of urine samples from a total of 19 FXS children. Urine miR-125a levels appeared to increase with age in control subjects, but varied widely in FXS subjects. Should the results be generalized, it could suggest that two FXS subgroups existed. Predicted gene targets of the differentially regulated miRNAs are involved in molecular pathways that regulate developmental processes, homeostasis, and neuronal function. Regulation of miR-125a has been associated with type I metabotropic glutamate receptor signaling (mGluR), which has been explored as a treatment target for FXS, reinforcing the possibility that urine miR-125a may provide a novel biomarker for FXS.


Subject(s)
Fragile X Syndrome/urine , MicroRNAs/urine , Receptors, Metabotropic Glutamate/metabolism , Adolescent , Biomarkers/urine , Child , Child, Preschool , Female , Fragile X Syndrome/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , MicroRNAs/chemistry , Mutation , Receptors, Metabotropic Glutamate/genetics , Signal Transduction/genetics
20.
Br J Anaesth ; 124(2): 197-205, 2020 02.
Article in English | MEDLINE | ID: mdl-31780140

ABSTRACT

BACKGROUND: Medication-related adverse events (MRE) in anaesthesia care are frequent and require a deeper understanding if we are to prevent medication harm. METHODS: We searched for reported MRE from the Spanish Anaesthesia Incident Reporting System (SENSAR) database over a 10-yr period. SENSAR is a cross-national, multicentre system focused on perioperative and critical care. A descriptive analysis of independent variables, phase of medication process, type of MRE, and medication group involved, and their relationships with morbidity was conducted. RESULTS: A total of 1970 MRE were identified from 7072 reported incidents. Patient harm was reported in 31% of the MRE. The administration phase was more frequent (42%) and showed the highest harm rate (44%) compared with other medication process phases. The most frequent types of MRE were wrong treatment regimen and wrong medication (55% of cases). The medication groups most commonly reported were those that alter haemostasis (18%), vasoconstrictor agents (13%), and opioids (10%). Vasoconstrictor agents, benzodiazepines, and neuromuscular blocking agents were the medication groups involved in patient harm four-fold more, and opioids three-fold more, than medications that alter haemostasis. The 1970 incidents were investigated and led to implementation of 4223 local corrective patient safety and quality improvement measures. CONCLUSIONS: Patient harm in the perioperative setting from medications remains a major issue for patients, hospital leaders, and clinicians. We found patterns and specific causes that can be mitigated through proven systems solutions, and should be taken into consideration in designing sustainable solutions for safe perioperative care. CLINICAL TRIAL REGISTRATION: NCT03615898.


Subject(s)
Anesthesia/adverse effects , Patient Safety/statistics & numerical data , Risk Management/statistics & numerical data , Databases, Factual/statistics & numerical data , Humans , Quality Improvement , Retrospective Studies , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...