Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Physiol Rep ; 12(8): e15993, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627215

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health issue with a worldwide prevalence of 30%-32%. In animal models, voluntary exercise may be an alternative to forced physical activity, avoiding stress, potential injuries, and being logistically simpler. Here, we assessed voluntary exercise (Vex) in Sprague-Dawley rats fed a high-fat, high-cholesterol diet for 18 weeks to induce MASLD. We quantified workload (speed and distance) using exercise wheels and evaluated energy expenditure using calorimetric cages. MASLD progression was assessed using circulating and hepatic biochemical and gene markers of steatosis, inflammation, and fibrosis. The animals ran an average of 301 km during the study period, with the average daily distance peaking at 4937 m/day during Weeks 3-4 before decreasing to 757 m/day by the end of the study. Rats exposed to Vex showed no improvement in any of the MASLD-associated features, such as steatosis, inflammation, or fibrosis. Rats exposed to Vex exhibited a higher total energy expenditure during the night phase (+0.35 kcal/h; p = 0.003) without resulting in any effect on body composition. We conclude that, in our experimental conditions, Vex failed to prevent MASLD progression in male Sprague-Dawley rats exposed to a high-fat high-cholesterol diet for 18 weeks.


Subject(s)
Fatty Liver , Metabolic Diseases , Rats , Male , Animals , Rats, Sprague-Dawley , Fatty Liver/metabolism , Diet, High-Fat/adverse effects , Cholesterol , Inflammation , Exercise , Fibrosis , Disease Progression
2.
Front Cardiovasc Med ; 11: 1342388, 2024.
Article in English | MEDLINE | ID: mdl-38317864

ABSTRACT

Introduction: Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods: C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results: The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion: The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.

3.
Nutrients ; 15(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38140315

ABSTRACT

Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide, and hypercholesterolemia is a central risk factor for atherosclerosis. This study evaluated the effects of Totum-070, a plant-based polyphenol-rich supplement, in hamsters with high-fat diet (HFD)-induced dyslipidemia. The molecular mechanisms of action were explored using human Caco2 enterocytes. Totum-070 supplementation reduced the total cholesterol (-41%), non-HDL cholesterol (-47%), and triglycerides (-46%) in a dose-dependent manner, compared with HFD. HFD-induced hepatic steatosis was also significantly decreased by Totum-070, an effect associated with the reduction in various lipid and inflammatory gene expression. Upon challenging with olive oil gavage, the post-prandial triglyceride levels were strongly reduced. The sterol excretion in the feces was increased in the HFD-Totum-070 groups compared with the HFD group and associated with reduction of intestinal cholesterol absorption. These effects were confirmed in the Caco2 cells, where incubation with Totum-070 inhibited cholesterol uptake and apolipoprotein B secretion. Furthermore, a microbiota composition analysis revealed a strong effect of Totum-070 on the alpha and beta diversity of bacterial species and a significant decrease in the Firmicutes to Bacteroidetes ratio. Altogether, our findings indicate that Totum-070 lowers hypercholesterolemia by reducing intestinal cholesterol absorption, suggesting that its use as dietary supplement may be explored as a new preventive strategy for cardiovascular diseases.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Hyperlipidemias , Cricetinae , Animals , Humans , Hypercholesterolemia/etiology , Plant Extracts/pharmacology , Plant Extracts/metabolism , Diet, High-Fat/adverse effects , Polyphenols/pharmacology , Polyphenols/metabolism , Caco-2 Cells , Mesocricetus , Cholesterol/metabolism , Hyperlipidemias/metabolism , Triglycerides/metabolism , Atherosclerosis/etiology , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Liver/metabolism
4.
Nutr Res ; 118: 70-84, 2023 10.
Article in English | MEDLINE | ID: mdl-37598559

ABSTRACT

Global prevalence of obesity and type 2 diabetes are rapidly increasing to pandemic proportions. A novel supplement composed of 5 plant extracts from olive leaf, bilberry, artichoke, chrysanthellum, and black pepper was designed to prevent type 2 diabetes development in people at risk. It was previously shown to improve body weight and glucose control in preclinical rodent models, with these effects being accompanied by increased fecal energy excretion and in vitro inhibition of several digestive enzymes. Thus, we hypothesized that, in mice fed a high-fat diet (HFD), a single dose of this botanical supplementation would decrease the responses to oral fat and carbohydrate tolerance tests, and that chronic supplementation would result in increased fecal triglyceride content. We showed that acute administration in HFD-fed mice (1.452 g/kg body weight) markedly reduced circulating triglycerides following an oral lipid gavage, whereas glycemic responses to various carbohydrate tests were only mildly affected. When incorporated into the food (2.5%) of HFD-fed mice, chronic supplementation prevented body weight gain and improved glucose homeostasis and lipid tolerance. Fecal free fatty acid content, but not triglyceride, was significantly increased in supplemented animals, suggesting reduced lipid absorption in the digestive tract. Congruently, this botanical supplementation downregulated several genes associated with fatty acid transport whose expression was increased by HFD, principally in the jejunum. This study provides novel insights as for the mode of action behind the antiobesity effect of this plant-based supplementation, in HFD-fed mice.


Subject(s)
Diabetes Mellitus, Type 2 , Plant Extracts , Humans , Animals , Mice , Diet, High-Fat/adverse effects , Polyphenols/pharmacology , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Weight Gain , Body Weight , Triglycerides/metabolism , Nutrients , Carbohydrates , Mice, Inbred C57BL
5.
Nutrients ; 15(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37111121

ABSTRACT

TOTUM-070 is a patented polyphenol-rich blend of five different plant extracts showing separately a latent effect on lipid metabolism and potential synergistic properties. In this study, we investigated the health benefit of such a formula. Using a preclinical model of high fat diet, TOTUM-070 (3 g/kg of body weight) limited the HFD-induced hyperlipemia with a reduction in triglyceride (-32% after 6 weeks; -20.3% after 12 weeks) and non-HDL cholesterol levels (-21% after 6 weeks; -38.4% after 12 weeks). To further investigate such a benefit and its underlying mechanisms in humans, we designed an ex vivo clinical approach to collect the circulating bioactives resulting from TOTUM-070 ingestion and to determine their biological activities on human hepatocytes. Human serum was obtained from healthy subjects before and after intake of TOTUM-070 (4995 mg). The presence of circulating metabolites was assessed by UPLC-MS/MS. Serum containing metabolites was further incubated with hepatocytes cultured in a lipotoxic environment (palmitate, 250 µM). RNA sequencing analyses show that lipid metabolism was one of the most impacted processes. Using histologic, proteomic, and enzymatic assays, the effects of human TOTUM-070 bioactives on hepatocyte metabolism were characterized by (1) the inhibition of lipid storage, including both (2) triglycerides (-41%, p < 0.001) and (3) cholesterol (-50%, p < 0.001) intracellular content, (4) a reduced de novo cholesterol synthesis (HMG-CoA reductase activity -44%, p < 0.001), and (5) a lowered fatty acid synthase protein level (p < 0.001). Altogether, these data support the beneficial impact of TOTUM-070 on lipid metabolism and provide new biochemical insights in human mechanisms occurring in liver cells.


Subject(s)
Lipid Metabolism , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/metabolism , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry , Hepatocytes , Cholesterol , Triglycerides , Diet, High-Fat , Liver/metabolism
6.
Int J Mol Sci ; 24(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36835060

ABSTRACT

Controlling post-prandial hyperglycemia and hyperlipidemia, particularly by regulating the activity of digestive enzymes, allows managing type 2 diabetes and obesity. The aim of this study was to assess the effects of TOTUM-63, a formulation of five plant extracts (Olea europaea L., Cynara scolymus L., Chrysanthellum indicum subsp. afroamericanum B.L.Turner, Vaccinium myrtillus L., and Piper nigrum L.), on enzymes involved in carbohydrate and lipid absorption. First, in vitro inhibition assays were performed by targeting three enzymes: α-glucosidase, α-amylase, and lipase. Then, kinetic studies and binding affinity determinations by fluorescence spectrum changes and microscale thermophoresis were performed. The in vitro assays showed that TOTUM-63 inhibited all three digestive enzymes, particularly α-glucosidase (IC50 of 13.1 µg/mL). Mechanistic studies on α-glucosidase inhibition by TOTUM-63 and molecular interaction experiments indicated a mixed (full) inhibition mechanism, and higher affinity for α-glucosidase than acarbose, the reference α-glucosidase inhibitor. Lastly, in vivo data using leptin receptor-deficient (db/db) mice, a model of obesity and type 2 diabetes, indicated that TOTUM-63 might prevent the increase in fasting glycemia and glycated hemoglobin (HbA1c) levels over time, compared with the untreated group. These results show that TOTUM-63 is a promising new approach for type 2 diabetes management via α-glucosidase inhibition.


Subject(s)
Diabetes Mellitus, Type 2 , Glycoside Hydrolase Inhibitors , Plant Extracts , alpha-Glucosidases , Animals , Mice , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Kinetics , Lipase/metabolism , Obesity , Plant Extracts/pharmacology
7.
Diabetes Obes Metab ; 24(12): 2331-2340, 2022 12.
Article in English | MEDLINE | ID: mdl-35837981

ABSTRACT

AIM: The plant-based polyphenol-rich extract TOTUM-63 improves glucose homeostasis in various preclinical models of obesity and type 2 diabetes (T2D). A pilot exploratory study showed that TOTUM-63 has good safety and tolerability profiles, and beneficial effects on postprandial glucose control in healthy individuals with overweight. The aim of this study was to assess the effects of TOTUM-63 on glycaemic control in individuals with prediabetes or early stage newly-diagnosed T2D (which does not require pharmacological treatment). MATERIALS AND METHODS: This study was a multicentre, randomized, double-blind, placebo-controlled trial. Individuals with prediabetes or early stage newly-diagnosed T2D and with overweight/abdominal obesity received TOTUM-63 (5 g/day) or placebo for 6 months. The primary outcome was the change in fasting blood glucose. RESULTS: Fifty-one participants (age: 57.1 ± 10 years; body mass index: 31.3 ± 5.7 kg.m2 ; 35 women and 16 men) completed the study (n = 38 TOTUM-63, n = 13 placebo). After 6 months, blood glucose concentration after fasting and after the 2-h oral glucose tolerance test was reduced in the TOTUM-63-treated group compared with the placebo group (placebo-corrected difference between baseline and month 6: -0.71 mmol/L, p < .05, and -1.93 mmol/L, p < .05, respectively). TOTUM-63 was safe and well tolerated and significantly reduced body weight gain (-1.9 kg; p < .05), waist circumference (-4.5 cm; p < .001), circulating triglycerides (-0.54 mmol/L; p < .01) and low-density lipoprotein-cholesterol (-0.38 mmol/L; p < .05) compared with placebo. CONCLUSIONS: TOTUM-63 lowered fasting blood glucose in participants with impaired fasting glycaemia and glucose intolerance. Moreover, TOTUM-63 showed a good safety and tolerability profile and improved several metabolic syndrome features. Therefore, TOTUM-63 is a promising candidate for T2D prevention.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Male , Female , Humans , Middle Aged , Aged , Prediabetic State/diagnosis , Prediabetic State/drug therapy , Blood Glucose/metabolism , Polyphenols/therapeutic use , Glycemic Control , Overweight/complications , Overweight/drug therapy , Plant Extracts/therapeutic use , Double-Blind Method , Obesity/complications , Obesity/drug therapy
8.
Nutr Metab Cardiovasc Dis ; 32(7): 1797-1807, 2022 07.
Article in English | MEDLINE | ID: mdl-35618560

ABSTRACT

BACKGROUND AND AIMS: TOTUM-63, a fibre and polyphenol rich plant-based composition, has been demonstrated to significantly improve body weight and glucose homeostasis in animal models of obesity. Our study aimed at exploring whether the mechanisms include modulation of gut (glucose-dependent insulinotropic peptide (GIP), glucagon-like petide-1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY)) and pancreatic (insulin, glucagon) hormones, all important regulators of glucose control, appetite and body weight. METHODS AND RESULTS: Male C57BL/6JRJ mice were assigned to either standard chow (CON), high fat diet (HF, 60% energy from fat) or HF-TOTUM-63 (HF diet 60% supplemented with TOTUM-63 2.7%) for 10 weeks. In vivo glucose homeostasis (oral glucose tolerance test (OGTT), intraperitoneal pyruvate tolerance test (ipPTT)), glucose-induced portal vein hormone concentration, gut hormone gene expression and protein content as well as enteroendocrine cell contents were assessed at the end of the dietary intervention. The present study evidenced that TOTUM-63 reduced food intake, limited weight gain and improved glucose and pyruvate tolerance of HF-fed animals. This was associated with an increase in PYY content in the colon, an altered pattern of PYY secretion between fasted and glucose-stimulated states, and with a significant improvement in the portal vein concentration of GLP-1, insulin and glucagon, but not GIP and CCK, in response to glucose stimulation. CONCLUSION: Overall, these data suggest that TOTUM-63 might have a specific impact on gut L-cells and on the expression and secretion of GLP-1 and PYY incretins, potentially contributing to the reduced food intake, body weight gain and improved glucose homeostasis.


Subject(s)
Glucagon , Plant Extracts/pharmacology , Polyphenols , Animals , Blood Glucose/metabolism , Body Weight , Diet, High-Fat , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1/metabolism , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Peptide YY , Polyphenols/pharmacology , Pyruvates , Weight Gain
10.
Nutrients ; 13(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066988

ABSTRACT

Obesity and prediabetes are the two strongest risk factors of type 2 diabetes. It has been reported that TOTUM-63, a polyphenol-rich plant extract, has beneficial effects on body weight (BW) and insulin resistance in mice fed a high fat diet (HFD). The study aim was to determine whether high-intensity interval training (HIIT) and/or TOTUM-63 supplementation improved body composition and glycemic control and gut microbiota composition in a Western diet-induced obesity rat model. Wistar rats received a standard diet (CTRL; control; n = 12) or HFD (HFD; n = 48) for 16 weeks. Then, HFD rats were divided in four groups: HFD, HFD + TOTUM-63 (T63), HFD + HIIT (HIIT), and HFD + HIIT +T63 (HIIT + T63). Training was performed 4 days/week for 12 weeks. TOTUM-63 was included in diet composition (2%). The HIIT + T63 combination significantly limited BW gain, without any energy intake modulation, and improved glycemic control. BW variation was correlated with increased α-diversity of the colon mucosa microbiota in the HIIT + T63 group. Moreover, the relative abundance of Anaeroplasma, Christensenellaceae and Oscillospira was higher in the HIIT + T63 group. Altogether, these results suggest that the HIIT and TOTUM-63 combination could be proposed for the management of obesity and prediabetes.


Subject(s)
Dietary Supplements , High-Intensity Interval Training , Obesity/therapy , Physical Conditioning, Animal/methods , Plant Extracts/administration & dosage , Polyphenols/administration & dosage , Animals , Body Composition/physiology , Combined Modality Therapy , Diabetes Mellitus, Type 2/prevention & control , Diet, High-Fat/adverse effects , Disease Models, Animal , Gastrointestinal Microbiome/physiology , Glycemic Control , Intestinal Mucosa/microbiology , Male , Obesity/etiology , Obesity/physiopathology , Prediabetic State/etiology , Prediabetic State/physiopathology , Prediabetic State/therapy , Rats , Rats, Wistar , Weight Gain/physiology
11.
Am J Physiol Endocrinol Metab ; 320(6): E1119-E1137, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33938234

ABSTRACT

Global prevalence of type 2 diabetes (T2D) is rising and may affect 700 million people by 2045. Totum-63 is a polyphenol-rich natural composition developed to reduce the risk of T2D. We first investigated the effects of Totum-63 supplementation in high-fat diet (HFD)-fed mice for up to 16 wk and thereafter assessed its safety and efficacy (2.5 g or 5 g per day) in 14 overweight men [mean age 51.5 yr, body mass index (BMI) 27.6 kg·m-2] for 4 wk. In HFD-fed mice, Totum-63 reduced body weight and fat mass gain, whereas lean mass was unchanged. Moreover, fecal energy excretion was higher in Totum-63-supplemented mice, suggesting a reduction of calorie absorption in the digestive tract. In the gut, metagenomic analyses of fecal microbiota revealed a partial restoration of HFD-induced microbial imbalance, as shown by principal coordinate analysis of microbiota composition. HFD-induced increase in HOMA-IR score was delayed in supplemented mice, and insulin response to an oral glucose tolerance test was significantly reduced, suggesting that Totum-63 may prevent HFD-related impairments in glucose homeostasis. Interestingly, these improvements could be linked to restored insulin signaling in subcutaneous adipose tissue and soleus muscle. In the liver, HFD-induced steatosis was reduced by 40% (as shown by triglyceride content). In the subsequent study in men, Totum-63 (5 g·day-1) improved glucose and insulin responses to a high-carbohydrate breakfast test (84% kcal carbohydrates). It was well tolerated, with no clinically significant adverse events reported. Collectively, these data suggest that Totum-63 could improve glucose homeostasis in both HFD-fed mice and overweight individuals, presumably through a multitargeted action on different metabolic organs.NEW & NOTEWORTHY Totum-63 is a novel polyphenol-rich natural composition developed to reduce the risk of T2D. Totum-63 showed beneficial effects on glucose homeostasis in HFD-fed mice, presumably through a multitargeted action on different metabolic organs. Totum-63 was well tolerated in humans and improved postprandial glucose and insulin responses to a high-carbohydrate breakfast test.


Subject(s)
Blood Glucose/drug effects , Hyperglycemia/prevention & control , Plant Extracts/pharmacology , Adult , Animals , Blood Glucose/metabolism , Chrysanthemum/chemistry , Cynara scolymus/chemistry , Glycemic Control/methods , Homeostasis/drug effects , Humans , Hyperglycemia/blood , Hyperglycemia/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Olea/chemistry , Overweight/blood , Overweight/drug therapy , Overweight/metabolism , Pilot Projects , Piper nigrum/chemistry , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Postprandial Period/drug effects , Translational Research, Biomedical , Vaccinium myrtillus/chemistry
12.
Oxid Med Cell Longev ; 2019: 1965364, 2019.
Article in English | MEDLINE | ID: mdl-31396298

ABSTRACT

BACKGROUND AND AIM: Exercise is an effective strategy to reduce obesity-induced oxidative stress. The purpose of this study was to compare the effects of two training modalities (moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT)) on the pro/antioxidant status of different tissues in obese Zucker rats. METHODS: Eight-week-old male Zucker rats (fa/fa, n = 36) were subdivided in three groups: MICT, HIIT, and control (no exercise) groups. Trained animals ran on a treadmill (0° slope), 5 days/week for 10 weeks (MICT: 51 min at 12 m·min-1; HIIT: 6 sets of 3 min at 10 m·min-1 followed by 4 min at 18 m·min-1). Epididymal (visceral) and subcutaneous adipose tissue, gastrocnemius muscle, and plasma samples were collected to measure oxidative stress markers (advanced oxidation protein products (AOPP), oxidized low-density lipoprotein (oxLDL)), antioxidant system markers (ferric-reducing ability of plasma (FRAP), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities), and prooxidant enzymes (NADPH oxidase and xanthine oxidase (XO) activities, myeloperoxidase content). RESULTS: Compared with the control, MICT increased GPx and catalase activities and the FRAP level in epididymal adipose tissue. HIIT increased the AOPP level in subcutaneous adipose tissue. In the muscle, HIIT increased both SOD and GPx activities and reduced the AOPP level, whereas MICT increased only SOD activity. Finally, plasma myeloperoxidase content was similarly decreased by both training modalities, whereas oxLDL was reduced only in the MICT group. CONCLUSION: Both HIIT and MICT improved the pro/antioxidant status. However, HIIT was more efficient than MICT in the skeletal muscle, whereas MICT was more efficient in epididymal adipose tissue. This suggests that oxidative stress responses to HIIT and MICT are tissue-specific. This could result in ROS generation via different pathways in these tissues. From a practical point of view, the two training modalities should be combined to obtain a global response in people with obesity.


Subject(s)
Adipose Tissue/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Physical Conditioning, Animal , Animals , Antioxidants/metabolism , Glutathione Peroxidase/metabolism , High-Intensity Interval Training , Lipoproteins, LDL/blood , Male , Malondialdehyde/blood , NADPH Oxidases/metabolism , Obesity/metabolism , Obesity/pathology , Oxidants/metabolism , Rats , Rats, Zucker , Superoxide Dismutase/metabolism
13.
Sci Rep ; 7(1): 204, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28303003

ABSTRACT

Physical activity is known as an effective strategy for prevention and treatment of Type 2 Diabetes. The aim of this work was to compare the effects of a traditional Moderate Intensity Continuous Training (MICT) with a High Intensity Interval Training (HIIT) on glucose metabolism and mitochondrial function in diabetic mice. Diabetic db/db male mice (N = 25) aged 6 weeks were subdivided into MICT, HIIT or control (CON) group. Animals in the training groups ran on a treadmill 5 days/week during 10 weeks. MICT group ran for 80 min (0° slope) at 50-60% of maximal speed (Vmax) reached during an incremental test. HIIT group ran thirteen times 4 minutes (20° slope) at 85-90% of Vmax separated by 2-min-rest periods. HIIT lowered fasting glycaemia and HbA1c compared with CON group (p < 0.05). In all mitochondrial function markers assessed, no differences were noted between the three groups except for total amount of electron transport chain proteins, slightly increased in the HIIT group vs CON. Western blot analysis revealed a significant increase of muscle Glut4 content (about 2 fold) and higher insulin-stimulated Akt phosphorylation ratios in HIIT group. HIIT seems to improve glucose metabolism more efficiently than MICT in diabetic mice by mechanisms independent of mitochondrial adaptations.


Subject(s)
Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 2/therapy , Mitochondria/physiology , Muscle, Skeletal/cytology , Physical Conditioning, Animal/methods , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Glucose Transporter Type 4/metabolism , Glycated Hemoglobin/metabolism , High-Intensity Interval Training , Mice , Mitochondria/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
14.
Hypertension ; 67(5): 983-91, 2016 May.
Article in English | MEDLINE | ID: mdl-26975707

ABSTRACT

Angiotensin-(1-7) improves glycemic control in animal models of cardiometabolic syndrome. The tissue-specific sites of action and blood pressure dependence of these metabolic effects, however, remain unclear. We hypothesized that Ang-(1-7) improves insulin sensitivity by enhancing peripheral glucose delivery. Adult male C57BL/6J mice were placed on standard chow or 60% high-fat diet for 11 weeks. Ang-(1-7) (400 ng/kg per minute) or saline was infused subcutaneously during the last 3 weeks of diet, and hyperinsulinemic-euglycemic clamps were performed at the end of treatment. High-fat fed mice exhibited modest hypertension (systolic blood pressure: 137 ± 3 high fat versus 123 ± 5 mm Hg chow;P=0.001), which was not altered by Ang-(1-7) (141 ± 4 mm Hg;P=0.574). Ang-(1-7) did not alter body weight or fasting glucose and insulin in chow or high-fat fed mice. Ang-(1-7) increased the steady-state glucose infusion rate needed to maintain euglycemia in high-fat fed mice (31 ± 5 Ang-(1-7) versus 16 ± 1 mg/kg per minute vehicle;P=0.017) reflecting increased whole-body insulin sensitivity, with no effect in chow-fed mice. The improved insulin sensitivity in high-fat fed mice was because of an enhanced rate of glucose disappearance (34 ± 5 Ang-(1-7) versus 20 ± 2 mg/kg per minute vehicle;P=0.049). Ang-(1-7) enhanced glucose uptake specifically into skeletal muscle by increasing translocation of glucose transporter 4 to the sarcolemma. Our data suggest that Ang-(1-7) has direct insulin-sensitizing effects on skeletal muscle, independent of changes in blood pressure. These findings provide new insight into mechanisms by which Ang-(1-7) improves insulin action, and provide further support for targeting this peptide in cardiometabolic disease.


Subject(s)
Angiotensin I/pharmacology , Blood Glucose/drug effects , Diet, High-Fat/adverse effects , Insulin Resistance/physiology , Peptide Fragments/pharmacology , Renin-Angiotensin System/drug effects , Analysis of Variance , Animals , Blood Glucose/metabolism , Blood Pressure Determination/methods , Body Composition/physiology , Cardiovascular Diseases/prevention & control , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Glucose Clamp Technique , Heart Function Tests , Hemodynamics/physiology , Hypertension/prevention & control , Infusions, Subcutaneous , Male , Mice , Mice, Inbred C57BL , Obesity/complications , Obesity/physiopathology , Random Allocation , Reference Values
15.
Shock ; 45(6): 677-85, 2016 06.
Article in English | MEDLINE | ID: mdl-26682946

ABSTRACT

Lipopolysaccharide (LPS) is known to impair insulin-stimulated muscle glucose uptake (MGU). We determined if increased glucose transport (GLUT4) or phosphorylation capacity (hexokinase II; HKII) could overcome the impairment in MGU. We used mice that overexpressed GLUT4 (GLUT4) or HKII (HK) in skeletal muscle. Studies were performed in conscious, chronically catheterized (carotid artery and jugular vein) mice. Mice received an intravenous bolus of either LPS (10 µg/g body weight) or vehicle (VEH). After 5 h, a hyperinsulinemic-euglycemic clamp was performed. As MGU is also dependent on cardiovascular function that is negatively affected by LPS, cardiac function was assessed using echocardiography. LPS decreased whole body glucose disposal and MGU in wild-type (WT) and HK mice. In contrast, the decrease was attenuated in GLUT4 mice. Although membrane-associated GLUT4 was increased in VEH-treated GLUT4 mice, LPS impaired membrane-associated GLUT4 in GLUT4 mice to the same level as LPS-treated WT mice. This suggested that overexpression of GLUT4 had further benefits beyond preserving transport activity. In fact, GLUT4 overexpression attenuated the LPS-induced decrease in cardiac function. The maintenance of MGU in GLUT4 mice following LPS was accompanied by sustained anaerobic glycolytic flux as suggested by increased muscle Pdk4 expression, and elevated lactate availability. Thus, enhanced glucose transport, but not phosphorylation capacity, ameliorates LPS-induced impairments in MGU. This benefit is mediated by long-term adaptations to the overexpression of GLUT4 that sustain muscle anaerobic glycolytic flux and cardiac function in response to LPS.


Subject(s)
Blood Glucose/metabolism , Insulin/metabolism , Lipopolysaccharides/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Animals , Disease Models, Animal , Glucose Transporter Type 4/metabolism , Glycogen/metabolism , Mice , Mice, Inbred C57BL , Muscle Proteins/metabolism
16.
Am J Physiol Regul Integr Comp Physiol ; 309(9): R1144-52, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26377563

ABSTRACT

Inflammatory lung diseases (e.g., pneumonia and acute respiratory distress syndrome) are associated with hyperglycemia, even in patients without a prior diagnosis of Type 2 diabetes. It is unknown whether the lung inflammation itself or the accompanying comorbidities contribute to the increased risk of hyperglycemia and insulin resistance. To investigate whether inflammatory signaling by airway epithelial cells can induce systemic insulin resistance, we used a line of doxycycline-inducible transgenic mice that express a constitutive activator of the NF-κB in airway epithelial cells. Airway inflammation with accompanying neutrophilic infiltration was induced with doxycycline over 5 days. Then, hyperinsulinemic-euglycemic clamps were performed in chronically catheterized, conscious mice to assess insulin action. Lung inflammation decreased the whole body glucose requirements and was associated with secondary activation of inflammation in multiple tissues. Metabolic changes occurred in the absence of hypoxemia. Lung inflammation markedly attenuated insulin-induced suppression of hepatic glucose production and moderately impaired insulin action in peripheral tissues. The hepatic Akt signaling pathway was intact, while hepatic markers of inflammation and plasma lactate were increased. As insulin signaling was intact, the inability of insulin to suppress glucose production in the liver could have been driven by the increase in lactate, which is a substrate for gluconeogenesis, or due to an inflammation-driven signal that is independent of Akt. Thus, localized airway inflammation that is observed during inflammatory lung diseases can contribute to systemic inflammation and insulin resistance.


Subject(s)
Blood Glucose/metabolism , Insulin Resistance , Insulin/blood , Lung/metabolism , NF-kappa B/metabolism , Pneumonia/metabolism , Animals , Asthma , Cytokines/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
17.
Cardiovasc Diabetol ; 14: 75, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26055507

ABSTRACT

BACKGROUND: Several translational studies have identified the differential role between saturated and unsaturated fatty acids at cardiovascular level. However, the molecular mechanisms that support the protective role of oleate in cardiovascular cells are poorly known. For these reasons, we studied the protective role of oleate in the insulin resistance and in the atherosclerotic process at cellular level such as in cardiomyocytes (CMs), vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). METHODS: The effect of oleate in the cardiovascular insulin resistance, vascular dysfunction, inflammation, proliferation and apoptosis of VSMCs were analyzed by Western blot, qRT-PCR, BrdU incorporation and cell cycle analysis. RESULTS: Palmitate induced insulin resistance. However, oleate not only did not induce cardiovascular insulin resistance but also had a protective effect against insulin resistance induced by palmitate or TNFα. One mechanism involved might be the prevention by oleate of JNK-1/2 or NF-κB activation in response to TNF-α or palmitate. Oleate reduced MCP-1 and ICAM-1 and increased eNOS expression induced by proinflammatory cytokines in ECs. Furthermore, oleate impaired the proliferation induced by TNF-α, angiotensin II or palmitate and the apoptosis induced by TNF-α or thapsigargin in VSMCs. CONCLUSIONS: Our data suggest a differential role between oleate and palmitate and support the concept of the cardioprotector role of oleate as the main lipid component of virgin olive oil. Thus, oleate protects against cardiovascular insulin resistance, improves endothelial dysfunction in response to proinflammatory signals and finally, reduces proliferation and apoptosis in VSMCs that may contribute to an ameliorated atherosclerotic process and plaque stability.


Subject(s)
Atherosclerosis/metabolism , Insulin Resistance , Muscle, Smooth, Vascular/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Smooth Muscle/drug effects , Oleic Acid/pharmacology , RNA, Messenger/drug effects , Angiotensin II/pharmacology , Animals , Apoptosis/drug effects , Blotting, Western , Cell Line , Cell Proliferation/drug effects , Chemokine CCL2/drug effects , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Inflammation , Intercellular Adhesion Molecule-1/drug effects , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , MAP Kinase Signaling System/drug effects , Mice , Muscle, Smooth, Vascular/cytology , Myocytes, Cardiac/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Palmitates/pharmacology , Palmitic Acid/pharmacology , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/pharmacology , Vasoconstrictor Agents/pharmacology
18.
Cardiovasc Diabetol ; 14: 56, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25986700

ABSTRACT

BACKGROUND: Endotoxin (i.e. LPS) administration induces a robust inflammatory response with accompanying cardiovascular dysfunction and insulin resistance. Overabundance of nitric oxide (NO) contributes to the vascular dysfunction. However, inflammation itself also induces insulin resistance in skeletal muscle. We sought to investigate whether the cardiovascular dysfunction induced by increased NO availability without inflammatory stress can promote insulin resistance. Additionally, we examined the role of inducible nitric oxide synthase (iNOS or NOS2), the source of the increase in NO availability, in modulating LPS-induced decrease in insulin-stimulated muscle glucose uptake (MGU). METHODS: The impact of NO donor infusion on insulin-stimulated whole-body and muscle glucose uptake (hyperinsulinemic-euglycemic clamps), and the cardiovascular system was assessed in chronically catheterized, conscious mice wild-type (WT) mice. The impact of LPS on insulin action and the cardiovascular system were assessed in WT and global iNOS knockout (KO) mice. Tissue blood flow and cardiac function were assessed using microspheres and echocardiography, respectively. Insulin signaling activity, and gene expression of pro-inflammatory markers were also measured. RESULTS: NO donor infusion decreased mean arterial blood pressure, whole-body glucose requirements, and MGU in the absence of changes in skeletal muscle blood flow. LPS lowered mean arterial blood pressure and glucose requirements in WT mice, but not in iNOS KO mice. Lastly, despite an intact inflammatory response, iNOS KO mice were protected from LPS-mediated deficits in cardiac output. LPS impaired MGU in vivo, regardless of the presence of iNOS. However, ex vivo, insulin action in muscle obtained from LPS treated iNOS KO animals was protected. CONCLUSION: Nitric oxide excess and LPS impairs glycemic control by diminishing MGU. LPS impairs MGU by both the direct effect of inflammation on the myocyte, as well as by the indirect NO-driven cardiovascular dysfunction.


Subject(s)
Endothelium-Dependent Relaxing Factors/pharmacology , Glucose/metabolism , Heart/drug effects , Insulin Resistance , Lipopolysaccharides/pharmacology , Muscle, Skeletal/drug effects , Nitric Oxide Synthase Type II/genetics , Nitric Oxide/pharmacology , Animals , Arterial Pressure/drug effects , Cardiac Output/drug effects , Chemokine CCL2/genetics , Echocardiography , Gene Expression , Glucose Clamp Technique , Inflammation , Interleukin-6/genetics , Mice , Mice, Knockout , Microspheres , Muscle Cells/drug effects , Muscle Cells/immunology , Muscle Cells/metabolism , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Regional Blood Flow/drug effects , Serpin E2/genetics , Tumor Necrosis Factor-alpha/genetics
19.
Mol Cell Endocrinol ; 409: 82-91, 2015 Jul 05.
Article in English | MEDLINE | ID: mdl-25797178

ABSTRACT

The main compensatory response to insulin resistance is the pancreatic beta cell hyperplasia to account for increased insulin secretion. In fact, in a previous work we proposed a liver-pancreas endocrine axis with IGF-I (insulin-like growth factor type I) secreted by the liver acting on IRA insulin receptor in beta cells from iLIRKO mice (inducible Liver Insulin Receptor KnockOut) that showed a high IRA/IRB ratio. However, the role of insulin receptor isoforms in the IGF-I-induced beta cell proliferation as well as the underlying molecular mechanisms remain poorly understood. For this purpose, we have used four immortalized mouse beta cell lines: bearing IR (IRLoxP), lacking IR (IRKO), expressing exclusively IRA (IRA), or alternatively expressing IRB (IRB). Pancreatic beta cell proliferation studies showed that IRA cells are more sensitive than those expressing IRB to the mitogenic response induced by IGF-I, acting through the pathway IRA/IRS-1/2/αp85/Akt/mTORC1/p70S6K. More importantly, IRA beta cells, but not IRB, showed an increased glucose uptake as compared with IRLoxP cells, this effect being likely owing to an enhanced association between Glut-1 and Glut-2 with IRA. Overall, our results strongly suggest a prevalent role of IRA in glucose availability and IGF-I-induced beta cell proliferation mainly through mTORC1. These results could explain, at least partially, the role played by the liver-secreted IGF-I in the compensatory beta cell hyperplasia observed in response to severe hepatic insulin resistance in iLIRKO mice.


Subject(s)
Glucose/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Secreting Cells/physiology , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Animals , Cell Line , Cell Proliferation , Cell Survival , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
20.
Am J Physiol Endocrinol Metab ; 307(10): E896-905, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25205821

ABSTRACT

Inappropriate glucagon secretion contributes to hyperglycemia in inflammatory disease. Previous work implicates the proinflammatory cytokine interleukin-6 (IL-6) in glucagon secretion. IL-6-KO mice have a blunted glucagon response to lipopolysaccharide (LPS) that is restored by intravenous replacement of IL-6. Given that IL-6 has previously been demonstrated to have a transcriptional (i.e., slow) effect on glucagon secretion from islets, we hypothesized that the rapid increase in glucagon following LPS occurred by a faster mechanism, such as by action within the brain. Using chronically catheterized conscious mice, we have demonstrated that central IL-6 stimulates glucagon secretion uniquely in the presence of an accompanying stressor (hypoglycemia or LPS). Contrary to our hypothesis, however, we found that IL-6 amplifies glucagon secretion in two ways; IL-6 not only stimulates glucagon secretion via the brain but also by direct action on islets. Interestingly, IL-6 augments glucagon secretion from both sites only in the presence of an accompanying stressor (such as epinephrine). Given that both adrenergic tone and plasma IL-6 are elevated in multiple inflammatory diseases, the interactions of the IL-6 and catecholaminergic signaling pathways in regulating GCG secretion may contribute to our present understanding of these diseases.


Subject(s)
Brain/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon/metabolism , Interleukin-6/genetics , Animals , Brain/drug effects , Epinephrine/pharmacology , Glucagon/drug effects , Glucose Clamp Technique , Hypoglycemia/metabolism , Interleukin-6/metabolism , Islets of Langerhans/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Stress, Physiological , Sympathomimetics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...