Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Rep ; 40(8): 111189, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001972

ABSTRACT

Oligodendrocyte dysfunction has been implicated in the pathogenesis of neurodegenerative diseases, so understanding oligodendrocyte activation states would shed light on disease processes. We identify three distinct activation states of oligodendrocytes from single-cell RNA sequencing (RNA-seq) of mouse models of Alzheimer's disease (AD) and multiple sclerosis (MS): DA1 (disease-associated1, associated with immunogenic genes), DA2 (disease-associated2, associated with genes influencing survival), and IFN (associated with interferon response genes). Spatial analysis of disease-associated oligodendrocytes (DAOs) in the cuprizone model reveals that DA1 and DA2 are established outside of the lesion area during demyelination and that DA1 repopulates the lesion during remyelination. Independent meta-analysis of human single-nucleus RNA-seq datasets reveals that the transcriptional responses of MS oligodendrocytes share features with mouse models. In contrast, the oligodendrocyte activation signature observed in human AD is largely distinct from those observed in mice. This catalog of oligodendrocyte activation states (http://research-pub.gene.com/OligoLandscape/) will be important to understand disease progression and develop therapeutic interventions.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Animals , Cuprizone/therapeutic use , Demyelinating Diseases/pathology , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Oligodendroglia
2.
Neuron ; 110(18): 2929-2948.e8, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35882228

ABSTRACT

Tau aggregation in neurofibrillary tangles (NFTs) is closely associated with neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the molecular signatures that distinguish between aggregation-prone and aggregation-resistant cell states are unknown. We developed methods for the high-throughput isolation and transcriptome profiling of single somas with NFTs from the human AD brain, quantified the susceptibility of 20 neocortical subtypes for NFT formation and death, and identified both shared and cell-type-specific signatures. NFT-bearing neurons shared a marked upregulation of synaptic transmission-related genes, including a core set of 63 genes enriched for synaptic vesicle cycling. Oxidative phosphorylation and mitochondrial dysfunction were highly cell-type dependent. Apoptosis was only modestly enriched, and the susceptibilities of NFT-bearing and NFT-free neurons for death were highly similar. Our analysis suggests that NFTs represent cell-type-specific responses to stress and synaptic dysfunction. We provide a resource for biomarker discovery and the investigation of tau-dependent and tau-independent mechanisms of neurodegeneration.


Subject(s)
Alzheimer Disease , Neurofibrillary Tangles , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Biomarkers/metabolism , Brain/metabolism , Humans , Neurofibrillary Tangles/metabolism , tau Proteins/genetics , tau Proteins/metabolism
3.
Acta Neuropathol ; 143(1): 33-53, 2022 01.
Article in English | MEDLINE | ID: mdl-34719765

ABSTRACT

Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-ß (Aß) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aß toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.


Subject(s)
Homeodomain Proteins/genetics , Tauopathies/genetics , Tauopathies/pathology , Tumor Suppressor Proteins/genetics , Aged , Aged, 80 and over , Aging/pathology , Animals , Cohort Studies , Drosophila , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
4.
Nature ; 598(7879): 200-204, 2021 10.
Article in English | MEDLINE | ID: mdl-34616070

ABSTRACT

The human brain is subdivided into distinct anatomical structures, including the neocortex, which in turn encompasses dozens of distinct specialized cortical areas. Early morphogenetic gradients are known to establish early brain regions and cortical areas, but how early patterns result in finer and more discrete spatial differences remains poorly understood1. Here we use single-cell RNA sequencing to profile ten major brain structures and six neocortical areas during peak neurogenesis and early gliogenesis. Within the neocortex, we find that early in the second trimester, a large number of genes are differentially expressed across distinct cortical areas in all cell types, including radial glia, the neural progenitors of the cortex. However, the abundance of areal transcriptomic signatures increases as radial glia differentiate into intermediate progenitor cells and ultimately give rise to excitatory neurons. Using an automated, multiplexed single-molecule fluorescent in situ hybridization approach, we find that laminar gene-expression patterns are highly dynamic across cortical regions. Together, our data suggest that early cortical areal patterning is defined by strong, mutually exclusive frontal and occipital gene-expression signatures, with resulting gradients giving rise to the specification of areas between these two poles throughout successive developmental timepoints.


Subject(s)
Gene Expression Regulation, Developmental , Neocortex/cytology , Neocortex/embryology , Atlases as Topic , Base Sequence , Biomarkers/metabolism , Humans , Neocortex/metabolism , Neurogenesis , Neuroglia/classification , Neuroglia/cytology , Neuroglia/metabolism , Neurons/classification , Neurons/cytology , Neurons/metabolism , Reproducibility of Results , Single-Cell Analysis , Time Factors
5.
Stem Cell Reports ; 16(10): 2548-2564, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34506726

ABSTRACT

The specification of inhibitory neurons has been described for the mouse and human brain, and many studies have shown that pluripotent stem cells (PSCs) can be used to create interneurons in vitro. It is unclear whether in vitro methods to produce human interneurons generate all the subtypes found in brain, and how similar in vitro and in vivo interneurons are. We applied single-nuclei and single-cell transcriptomics to model interneuron development from human cortex and interneurons derived from PSCs. We provide a direct comparison of various in vitro interneuron derivation methods to determine the homogeneity achieved. We find that PSC-derived interneurons capture stages of development prior to mid-gestation, and represent a minority of potential subtypes found in brain. Comparison with those found in fetal or adult brain highlighted decreased expression of synapse-related genes. These analyses highlight the potential to tailor the method of generation to drive formation of particular subtypes.


Subject(s)
Interneurons/metabolism , Neural Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Transcriptome , Cell Differentiation , Cellular Reprogramming Techniques/methods , Humans , Single-Cell Analysis , Transcription Factors/metabolism
6.
JCI Insight ; 4(17)2019 09 05.
Article in English | MEDLINE | ID: mdl-31484827

ABSTRACT

Deficiency of arginase is associated with hyperargininemia, and prominent features include spastic diplegia/tetraplegia, clonus, and hyperreflexia; loss of ambulation, intellectual disability and progressive neurological decline are other signs. To gain greater insight into the unique neuromotor features, we performed gene expression profiling of the motor cortex of a murine model of the disorder. Coexpression network analysis suggested an abnormality with myelination, which was supported by limited existing human data. Utilizing electron microscopy, marked dysmyelination was detected in 2-week-old homozygous Arg1-KO mice. The corticospinal tract was found to be adversely affected, supporting dysmyelination as the cause of the unique neuromotor features and implicating oligodendrocyte impairment in a deficiency of hepatic Arg1. Following neonatal hepatic gene therapy to express Arg1, the subcortical white matter, pyramidal tract, and corticospinal tract all showed a remarkable recovery in terms of myelinated axon density and ultrastructural integrity with active wrapping of axons by nearby oligodendrocyte processes. These findings support the following conclusions: arginase deficiency is a leukodystrophy affecting the brain and spinal cord while sparing the peripheral nervous system, and neonatal AAV hepatic gene therapy can rescue the defects associated with myelinated axons, strongly implicating the functional recovery of oligodendrocytes after restoration of hepatic arginase activity.


Subject(s)
Arginase/genetics , Genetic Predisposition to Disease/genetics , Hyperargininemia/genetics , Hyperargininemia/metabolism , Liver/enzymology , Liver/metabolism , Animals , Arginase/metabolism , Axons/metabolism , Axons/pathology , Central Nervous System/diagnostic imaging , Central Nervous System/pathology , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Therapy , Homozygote , Hyperargininemia/pathology , Male , Mice , Mice, Knockout , Oligodendroglia/metabolism , Transcriptome
7.
Front Neuroanat ; 10: 36, 2016.
Article in English | MEDLINE | ID: mdl-27092060

ABSTRACT

The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In contrast, sparse anterogradely-labeled and relaxin-3-immunoreactive fibers were observed in other amygdala nuclei, including the lateral, central and basal nuclei, while the nucleus accumbens lacked any innervation. Using synaptophysin as a synaptic marker, we identified relaxin-3 positive synaptic terminals in the medial amygdala, BST and endopiriform nucleus of amygdala. Our findings demonstrate the existence of topographic NI and relaxin-3-containing projections to specific nuclei of the extended amygdala, consistent with a likely role for this putative integrative arousal system in the regulation of amygdala-dependent social and emotional behaviors.

8.
Brain Struct Funct ; 221(7): 3445-73, 2016 09.
Article in English | MEDLINE | ID: mdl-26388166

ABSTRACT

Oxytocin (OT) and vasopressin (AVP) play a major role in social behaviours. Mice have become the species of choice for neurobiology of social behaviour due to identification of mouse pheromones and the advantage of genetically modified mice. However, neuroanatomical data on nonapeptidergic systems in mice are fragmentary, especially concerning the central distribution of OT. Therefore, we analyse the immunoreactivity for OT and its neurophysin in the brain of male and female mice (strain CD1). Further, we combine immunofluorescent detection of OT and AVP to locate cells co-expressing both peptides and their putative axonal processes. The results indicate that OT is present in cells of the neurosecretory paraventricular (Pa) and supraoptic hypothalamic nuclei (SON). From the anterior SON, OTergic cells extend into the medial amygdala, where a sparse cell population occupies its ventral anterior and posterior divisions. Co-expression of OT and AVP in these nuclei is rare. Moreover, a remarkable OTergic cell group is found near the ventral bed nucleus of the stria terminalis (BST), distributed between the anterodorsal preoptic nucleus and the nucleus of anterior commissure (ADP/AC). This cell group, the rostral edge of the Pa and the periventricular hypothalamus display frequent OT + AVP double labelling, with a general dominance of OT over AVP immunoreactivity. Fibres with similar immunoreactivity profile innervate the accumbens shell and core, central amygdala and portions of the intervening BST. These data, together with data in the literature on rats, suggest that the projections of ADP/AC nonapeptidergic cells onto these brain centres could promote pup-motivated behaviours and inhibit pup avoidance during motherhood.


Subject(s)
Arginine Vasopressin/metabolism , Brain/metabolism , Oxytocin/metabolism , Animals , Brain/cytology , Female , Mice , Neurons/cytology , Neurons/metabolism , Neurophysins/metabolism
9.
Brain Struct Funct ; 221(2): 1033-65, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25503449

ABSTRACT

The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.


Subject(s)
Amygdala/pathology , Amygdala/physiology , Sexual Behavior, Animal/physiology , Animals , Brain Mapping , Cerebral Cortex/physiology , Female , Frontal Lobe/physiology , Hippocampus/physiology , Hypothalamus/physiology , Mice , Neural Pathways , Olfactory Bulb/physiology , Olfactory Pathways , Thalamus/physiology , Vomeronasal Organ/physiology
10.
Brain Struct Funct ; 219(3): 1055-81, 2014 May.
Article in English | MEDLINE | ID: mdl-23625152

ABSTRACT

Quantitative analysis of the immunoreactivity for arginine-vasopressin (AVP-ir) in the telencephalon of male (intact and castrated) and female CD1 mice allows us to precisely locate two sexually dimorphic (more abundant in intact than castrated males and females) AVP-ir cell groups in the posterior bed nucleus of the stria terminalis (BST) and the amygdala. Chemoarchitecture (NADPH diaphorase) reveals that the intraamygdaloid AVP-ir cells are located in the intra-amygdaloid BST (BSTIA) rather than the medial amygdala (Me), as previously thought. Then, we have used for the first time tract tracing (combined with AVP immunofluorescence) and fiber-sparing lesions of the BST to analyze the projections of the telencephalic AVP-ir cell groups. The results demonstrate that the posterior BST originates the sexually dimorphic innervation of the lateral septum, the posterodorsal Me and a substance P-negative area in the medioventral striato-pallidum (mvStP).The BSTIA may also contribute to some of these terminal fields. Our material also reveals non-dimorphic AVP-ir processes in two locations of the amygdala. First, the ventral Me shows dendrite-like AVP-ir processes apparently belonging supraoptic neurons, whose possible functions are discussed. Second, the Ce shows sparse, thick AVP-ir axons with high individual variability in density and distribution, whose possible influence on stress coping in relation to the affiliative or agonistic behaviors mediated by the Me are discussed. Finally, we propose that the region of the mvStP showing sexually dimorphic AVP-ir innervation is part of the brain network for socio-sexual behavior, in which it would mediate motivational aspects of chemosensory-guided social interactions.


Subject(s)
Arginine Vasopressin/metabolism , Behavior, Animal/physiology , Neurons/metabolism , Sex Characteristics , Telencephalon/metabolism , Thalamus/metabolism , Amygdala/metabolism , Animals , Female , Male , Mice
11.
J Comp Neurol ; 520(9): 1903-39, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22134882

ABSTRACT

Neural tracing studies have revealed that the rat medial and lateral septum are targeted by ascending projections from the nucleus incertus, a population of tegmental GABA neurons. These neurons express the relaxin-family peptide, relaxin-3, and pharmacological modulation of relaxin-3 receptors in medial septum alters hippocampal theta rhythm and spatial memory. In an effort to better understand the basis of these interactions, we have characterized the distribution of relaxin-3 fibers/terminals in relation to different septal neuron populations identified using established protein markers. Dense relaxin-3 fiber plexuses were observed in regions of medial septum containing hippocampal-projecting choline acetyltransferase (ChAT)-, neuronal nitric oxide synthase (nNOS)-, and parvalbumin (PV)-positive neurons. In lateral septum (LS), relaxin-3 fibers were concentrated in the ventrolateral nucleus of rostral LS and the ventral nucleus of caudal LS, with sparse labeling in the dorsolateral and medial nuclei of rostral LS, dorsal nucleus of caudal LS, and ventral portion nuclei. Relaxin-3 fibers were also observed in the septofimbrial and triangular septal nuclei. In the medial septum, we observed relaxin-3-immunoreactive contacts with ChAT-, PV-, and glutamate decarboxylase-67-positive neurons that projected to hippocampus, and contacts between relaxin-3 terminals and calbindin- and calretinin-positive neurons. Relaxin-3 colocalized with synaptophysin in nerve terminals in all septal areas, and ultrastructural analysis revealed these terminals were symmetrical and contacted spines, somata, dendritic shafts, and occasionally other axonal terminals. These data predict that this GABA/peptidergic projection modulates septohippocampal activity and hippocampal theta rhythm related to exploratory navigation, defensive and ingestive behaviors, and responses to neurogenic stressors.


Subject(s)
Nerve Tissue Proteins/metabolism , Relaxin/metabolism , Septum of Brain/metabolism , Animals , Brain Mapping , Choline O-Acetyltransferase/metabolism , Glutamate Decarboxylase/metabolism , Male , Microscopy, Electron, Transmission , Neural Pathways/physiology , Neurons/metabolism , Neurons/ultrastructure , Nitric Oxide Synthase Type I/metabolism , Parvalbumins/metabolism , Rats , Rats, Sprague-Dawley , Septum of Brain/ultrastructure , Stilbamidines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...