Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(2): e06048, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33553773

ABSTRACT

Recent advances in phytochemical analysis have allowed the accumulation of data for crop researchers due to its capacity to footprint and distinguish metabolites that are present within an organisms, tissues or cells. Apart from genotypic traits, slight changes either by biotic or abiotic stimuli will have significant impact on the metabolite abundances and will eventually be observed through physicochemical characteristics. Apposite data mining to interpret the mounds of phytochemical information from such a dynamic system is thus incumbent. In this investigation, several statistical software platforms ranging from exploratory and confirmatory technique of multivariate data analysis from four different statistical tools of COVAIN, SIMCA-P+, MetaboAnalyst and RIKEN Excel Macro were appraised using an oil palm phytochemical data set. As different software tool encompasses its own advantages and limitations, the insights gained from this assessment were documented to enlighten several aspects of functions and suitability for the adaptation of the tools into the oil palm phytochemistry pipeline. This comparative analysis will certainly provide scientists with salient notes on data assessment and data mining that will later allow the depiction of the overall oil palm status in-situ and ex-situ.

2.
Molecules ; 25(12)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630515

ABSTRACT

Palm oil production from oil palm (Elaeis guineensis Jacq.) is vital for the economy of Malaysia. As of late, sustainable production of palm oil has been a key focus due to demand by consumer groups, and important progress has been made in establishing standards that promote good agricultural practices that minimize impact on the environment. In line with the industrial goal to build a traceable supply chain, several measures have been implemented to ensure that traceability can be monitored. Although the palm oil supply chain can be highly complex, and achieving full traceability is not an easy task, the industry has to be proactive in developing improved systems that support the existing methods, which rely on recorded information in the supply chain. The Malaysian Palm Oil Board (MPOB) as the custodian of the palm oil industry in Malaysia has taken the initiative to assess and develop technologies that can ensure authenticity and traceability of palm oil in the major supply chains from the point of harvesting all the way to key downstream applications. This review describes the underlying framework related to palm oil geographical traceability using various state-of-the-art analytical techniques, which are also being explored to address adulteration in the global palm oil supply chain.


Subject(s)
Arecaceae/chemistry , Conservation of Natural Resources , Palm Oil/analysis , Palm Oil/chemistry , Quality Control , Food Quality , Geography
3.
Data Brief ; 31: 105714, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32462070

ABSTRACT

Proteome data was obtained from the fruit mesocarps of the two oil palm species, namely, the African Elaeis guineensis (commercial tenera or commonly known as D x P and MPOB-Nigerian tenera) and the South American Elaeis oleifera. Total proteins were extracted from randomly selected fruitlets and subjected to proteomics characterisation by means of liquid chromatography mass spectrometry. Number of proteins identified, the grouping of the biological replicates from five developmental weeks after anthesis, and the localisation of gene corresponded to the detected proteins on the oil palm chromosomes, were presented. A total of 4,116, 4,210 and 4,081 proteins were found in commercial tenera and MPOB Nigerian tenera for Elaeis guineensis; and Elaeis oleifera, respectively. Principal component analysis showed two distinct clusters that corresponded to Elaeis guineensis and Elaeis oleifera. Collectively, genes that corresponded to the identified proteins were found to be located in all 16 oil palm chromosomes. A total of 59 proteins from Elaeis guineensis and Elaeis oleifera were down-regulated for >5-fold change during the peak of lipid biosynthesis compared to the onset. The same comparative analysis revealed that 66 proteins were up-regulated for >5-fold change. About 60.0% of the observed proteins were involved in catalytic activity while 28.5% were associated with redox reaction. Based on same datasets, the tricarboxylic acid cycle and 5-hydroxytryptamine degradation pathways were found to be enriched the most (>36-fold change). These data can be used to support the oil palm gene model validation and lipid metabolism research, particularly in the areas of oil yield and quality. The tabulated protein lists of identified proteins and their expression changes from these varieties were provided as supplementary files. Raw MSF and mzid files for all the oil palm species were deposited in the ProteomeXchange (PXD017436).

4.
PLoS One ; 14(8): e0221052, 2019.
Article in English | MEDLINE | ID: mdl-31415606

ABSTRACT

Protein solubility is a critical prerequisite to any proteomics analysis. Combination of urea/thiourea and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) have been routinely used to enhance protein solubilization for oil palm proteomics studies in recent years. The goals of these proteomics analysis are essentially to complement the knowledge regarding the regulation networks and mechanisms of the oil palm fatty acid biosynthesis. Through omics integration, the information is able to build a regulatory model to support efforts in improving the economic value and sustainability of palm oil in the global oil and vegetable market. Our study evaluated the utilization of sodium deoxycholate as an alternative solubilization buffer/additive to urea/thiourea and CHAPS. Efficiency of urea/thiourea/CHAPS, urea/CHAPS, urea/sodium deoxycholate and sodium deoxycholate buffers in solubilizing the oil palm (Elaeis guineensis var. Tenera) mesocarp proteins were compared. Based on the protein yields and electrophoretic profile, combination of urea/thiourea/CHAPS were shown to remain a better solubilization buffer and additive, but the differences with sodium deoxycholate buffer was insignificant. A deeper mass spectrometric and statistical analyses on the identified proteins and peptides from all the evaluated solubilization buffers revealed that sodium deoxycholate had increased the number of identified proteins from oil palm mesocarps, enriched their gene ontologies and reduced the number of carbamylated lysine residues by more than 67.0%, compared to urea/thiourea/CHAPS buffer. Although only 62.0% of the total identified proteins were shared between the urea/thiourea/CHAPS and sodium deoxycholate buffers, the importance of the remaining 38.0% proteins depends on the applications. The only observed limitations to the application of sodium deoxycholate in protein solubilization were the interference with protein quantitation and but it could be easily rectified through a 4-fold dilution. All the proteomics data are available via ProteomeXchange with identifier PXD013255. In conclusion, sodium deoxycholate is applicable in the solubilization of proteins extracted from oil palm mesocarps with higher efficiency compared to urea/thiourea/CHAPS buffer. The sodium deoxycholate buffer is more favorable for proteomics analysis due to its proven advantages over urea/thiourea/CHAPS buffer.


Subject(s)
Arecaceae/chemistry , Deoxycholic Acid/chemistry , Detergents/chemistry , Palm Oil/chemistry , Plant Proteins/analysis , Proteomics , Buffers , Cholic Acids/chemistry , Plant Proteins/chemistry
5.
BMC Res Notes ; 12(1): 229, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30992056

ABSTRACT

OBJECTIVE: The addition of residual oils such as palm fibre oil (PFO) and sludge palm oil (SPO) to crude palm oil (CPO) can be problematic within supply chains. PFO is thought to aggravate the accumulation of monochloropropanediols (MCPDs) in CPO, whilst SPO is an acidic by-product of CPO milling and is not fit for human consumption. Traditional targeted techniques to detect such additives are costly, time-consuming and require highly trained operators. Therefore, we seek to assess the use of gas chromatography-ion mobility spectrometry (GC-IMS) for rapid, cost-effective screening of CPO for the presence of characteristic PFO and SPO volatile organic compound (VOC) fingerprints. RESULTS: Lab-pressed CPO and commercial dispatch tank (DT) CPO were spiked with PFO and SPO, respectively. Both additives were detectable at concentrations of 1% and 10% (w/w) in spiked lab-pressed CPO, via seven PFO-associated VOCs and 21 SPO-associated VOCs. DT controls could not be distinguished from PFO-spiked DT CPO, suggesting these samples may have already contained low levels of PFO. DT controls were free of SPO. SPO was detected in all SPO-spiked dispatch tank samples by all 21 of the previously distinguished VOCs and had a significant fingerprint consisting of four spectral regions.


Subject(s)
Complex Mixtures/chemistry , Food Analysis/methods , Food Contamination/analysis , Palm Oil/chemistry , Volatile Organic Compounds/isolation & purification , Food Analysis/instrumentation , Gas Chromatography-Mass Spectrometry , Humans , Ion Mobility Spectrometry , Volatile Organic Compounds/classification
6.
Protein J ; 37(6): 473-499, 2018 12.
Article in English | MEDLINE | ID: mdl-30367348

ABSTRACT

Proteomics technologies were first applied in the oil palm research back in 2008. Since proteins are the gene products that are directly correspond to phenotypic traits, proteomic tools hold a strong advantage above other molecular tools to comprehend the biological and molecular mechanisms in the oil palm system. These emerging technologies have been used as non-overlapping tools to link genome-wide transcriptomics and metabolomics-based studies to enhance the oil palm yield and quality through sustainable plant breeding. Many efforts have also been made using the proteomics technologies to address the oil palm's Ganoderma disease; the cause and management. At present, the high-throughput screening technologies are being applied to identify potential biomarkers involved in metabolism and cellular development through determination of protein expression changes that correlate with oil production and disease. This review highlights key elements in proteomics pipeline, challenges and some examples of their implementations in plant studies in the context of oil palm in particular. We foresee that the proteomics technologies will play more significant role to address diverse issues related to the oil palm in the effort to improve the oil crop.


Subject(s)
Arecaceae/metabolism , Ganoderma , Plant Diseases , Plant Proteins/metabolism , Proteomics/methods , Arecaceae/genetics , Arecaceae/microbiology , Plant Proteins/genetics
7.
J Plant Physiol ; 169(15): 1565-70, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22854183

ABSTRACT

Glucanases are enzymes that hydrolyze a variety ß-d-glucosidic linkages. Plant ß-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative ß-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-ß-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum.


Subject(s)
Arecaceae/genetics , Arecaceae/microbiology , Cellulase/genetics , Ganoderma/pathogenicity , Plant Diseases/immunology , Plant Immunity/genetics , Trichoderma/pathogenicity , Cellulase/chemistry , Cellulases/metabolism , Gene Expression Regulation, Plant , Glucan Endo-1,3-beta-D-Glucosidase/metabolism , Plant Leaves/genetics , Plant Roots/genetics , Seedlings/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...