Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(7)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37999176

ABSTRACT

Recently, the usage of remote sensing (RS) data attained from unmanned aerial vehicles (UAV) or satellite imagery has become increasingly popular for crop classification processes, namely soil classification, crop mapping, or yield prediction. Food crop classification using RS images (RSI) is a significant application of RS technology in agriculture. It involves the use of satellite or aerial imagery to identify and classify different types of food crops grown in a specific area. This information can be valuable for crop monitoring, yield estimation, and land management. Meeting the criteria for analyzing these data requires increasingly sophisticated methods and artificial intelligence (AI) technologies provide the necessary support. Due to the heterogeneity and fragmentation of crop planting, typical classification approaches have a lower classification performance. However, the DL technique can detect and categorize crop types effectively and has a stronger feature extraction capability. In this aspect, this study designed a new remote sensing imagery data analysis using the marine predators algorithm with deep learning for food crop classification (RSMPA-DLFCC) technique. The RSMPA-DLFCC technique mainly investigates the RS data and determines the variety of food crops. In the RSMPA-DLFCC technique, the SimAM-EfficientNet model is utilized for the feature extraction process. The MPA is applied for the optimal hyperparameter selection process in order to optimize the accuracy of SimAM-EfficientNet architecture. MPA, inspired by the foraging behaviors of marine predators, perceptively explores hyperparameter configurations to optimize the hyperparameters, thereby improving the classification accuracy and generalization capabilities. For crop type detection and classification, an extreme learning machine (ELM) model can be used. The simulation analysis of the RSMPA-DLFCC technique is performed on two benchmark datasets. The extensive analysis of the results portrayed the higher performance of the RSMPA-DLFCC approach over existing DL techniques.

2.
Heliyon ; 9(10): e20901, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37876455

ABSTRACT

In this article, we focus on optimising the SLM-PTS-CT (selective mapping, partial transmission sequence, circular transformation) hybrid method for optical non-orthogonal multiple access (O-NOMA) waveforms. The goal is to enhance the spectrum performance and practicality of O-NOMA systems while mitigating the PAPR issue through a hybrid approach. The SLM-PTS-CT hybrid method is applicable to O-NOMA waveforms, providing effective PAPR reduction. By dividing the data sequence into sub-blocks, applying phase factors, and rotating the phase of the subcarriers in such a way that the peaks of the signal are distributed more uniformly, the proposed SLM-PTS-CT achieves an optimal PAPR reduction while maintaining the benefits of O-NOMA. The efficiency of the proposed method is analysed by estimating the performance of several parameters, such as bit error rate (BER), PAPR, and power spectral density (PSD), by increasing the number of sub-blocks (S) and phase factor (P). Further, the proposed SLM-PTS-CT is compared with the conventional SLM-PTS, SLM, and PTS. The simulation results demonstrate that the proposed approach efficiently improves spectral efficiency, preserves BER performance, and reduces PAPR as compared with conventional methods.

3.
Sensors (Basel) ; 20(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858928

ABSTRACT

In this paper, we present a navigation strategy exclusively designed for social robots with limited sensors for applications in homes. The overall system integrates a reactive design based on subsumption architecture and a knowledge system with learning capabilities. The component of the system includes several modules, such as doorway detection and room localization via convolutional neural network (CNN), avoiding obstacles via reinforcement learning, passing the doorway via Canny edge's detection, building an abstract map called a Directional Semantic Topological Map (DST-Map) within the knowledge system, and other predefined layers within the subsumption architecture. The individual modules and the overall system are evaluated in a virtual environment using Webots simulator.

4.
Sensors (Basel) ; 20(9)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349349

ABSTRACT

In this paper, we propose a novel algorithm to detect a door and its orientation in indoor settings from the view of a social robot equipped with only a monocular camera. The challenge is to achieve this goal with only a 2D image from a monocular camera. The proposed system is designed through the integration of several modules, each of which serves a special purpose. The detection of the door is addressed by training a convolutional neural network (CNN) model on a new dataset for Social Robot Indoor Navigation (SRIN). The direction of the door (from the robot's observation) is achieved by three other modules: Depth module, Pixel-Selection module, and Pixel2Angle module, respectively. We include simulation results and real-time experiments to demonstrate the performance of the algorithm. The outcome of this study could be beneficial in any robotic navigation system for indoor environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...