Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cytogenet ; 8: 25, 2015.
Article in English | MEDLINE | ID: mdl-25901182

ABSTRACT

BACKGROUND: Aflatoxin B1 (AFB1) is a mycotoxin produced by Aspergillus spec. The latter are worldwide contaminants of food with mutagenic and carcinogenic activities in animals and humans. AFB1 was shown to have deleterious effects on metabolism of eukaryotes in many model systems, including the ability to inhibit DNA replication. An agent that disturbs DNA replication may also have the potential to induce de novo DNA copy number variations (CNVs). RESULTS: Blood samples of three clinically healthy carriers were treated in vitro with AFB1 and chromosome preparations were subjected to parental origin determination fluorescence in situ hybridization (pod-FISH). Probes able to visualize CNVs in 8p21.2 and 15q11.2 were applied. In this setting here for the first time an influence of AFB1 on molecular-cytogenetically detectable CNVs could be shown. CONCLUSIONS: The obtained results indicate that: (i) pod-FISH is a single cell directed, sensitive and suitable method for the analysis of mutagen induced CNVs, (ii) AFB1 has the potential to induce in vitro instability of known CNVs in human leukocytes.

2.
Mol Cytogenet ; 7(1): 79, 2014.
Article in English | MEDLINE | ID: mdl-25435911

ABSTRACT

BACKGROUND: Banding-karyotyping and metaphase-directed-fluorescence-in-situhybridization (FISH) may be hampered by low mitotic index in leukemia. Interphase FISH (iFISH) is a way out here, however, testing many probes at the same time is protracted and expensive. Here multiplex-ligation-dependent-probe-amplification (MLPA) was used retrospectively in chronic lymphocytic leukemia (CLL) samples initially studied by banding cytogenetics and iFISH. Detection rates of iFISH and MLPA were compared and thus a cost-efficient scheme for routine diagnostics is proposed. RESULTS: Banding cytogenetics was done successfully in 67/85 samples. DNA was extracted from all 85 CLL samples. A commercially available MLPA probe set directed against 37 loci prone to be affected in hematological malignancies was applied. Besides, routine iFISH was done by commercially available probes for following regions: 11q22.3, 12p11.2-q11.1, 13q14.3, 13q34, 14q32.33 and 17p13.1. MLPA results were substantiated by iFISH using corresponding locus-specific probes. Aberrations were detected in 67 of 85 samples (~79%) applying banding cytogenetics, iFISH and MLPA. A maximum of 8 aberrations was detected per sample; however, one aberration per sample was found most frequently. Overall 163 aberrations were identified. 15 of those (~9%) were exclusively detected by banding cytogenetics, 95 were found by MLPA (~58%) and 100 (~61%) by routine iFISH. MLPA was not able to distinguish reliably between mono- and biallelic del(13)(q14.3q14.3), which could be easily identified as well as quantified by routine iFISH. Also iFISH was superior to MLPA in samples with low tumor cell load. On the other hand MLPA detected additional aberrations in 22 samples, two of them being without any findings after routine iFISH. CONCLUSIONS: Both MLPA and routine iFISH have comparable detection rates for aberrations being typically present in CLL. As MLPA can detect also rare chromosomal aberrations it should be used as an initial test if routine cytogenetics is not possible or non-informative. Still iFISH should be used additionally to distinguish mono- from biallelic deletions and also to determine rate of mosaicism for 13q14.2 to 13q14.3. In case MLPA is negative the corresponding CLL samples should be tested at least by iFISH using the standard probe set to.

3.
Mol Cytogenet ; 7: 47, 2014.
Article in English | MEDLINE | ID: mdl-25071866

ABSTRACT

BACKGROUND: In acute myeloid leukemia (AML), the MDS1 and EVI1 complex locus - MECOM, also known as the ecotropic virus integration site 1 - EVI1, located in band 3q26, can be rearranged with a variety of partner chromosomes and partner genes. Here we report on a 57-year-old female with AML who presented with the rare translocation t(3;10)(q26;q21) involving the MECOM gene. Our aim was to identify the fusion partner on chromosome 10q21 and to characterize the precise nucleotide sequence of the chromosomal breakpoint. METHODS: Cytogenetic and molecular-cytogenetic techniques, chromosome microdissection, next generation sequencing, long-range PCR and direct Sanger sequencing were used to map the chromosomal translocation. RESULTS: Using a combination of cytogenetic and molecular approaches, we mapped the t(3;10)(q26;q21) to the single nucleotide level, revealing a fusion of the MECOM gene (3q26.2) and C10orf107 (10q21.2). CONCLUSIONS: The approach described here opens up new possibilities in characterizing acquired as well as congenital chromosomal aberrations. In addition, DNA sequences of chromosomal breakpoints may be a useful tool for unique molecular minimal residual disease target identification in acute leukemia patients.

4.
Exp Hematol Oncol ; 3: 28, 2014.
Article in English | MEDLINE | ID: mdl-25954594

ABSTRACT

T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive subtype of chronic lymphocytic leukemia. Usually it presents in older people with a median age of 61 years. T-PLL is characterized by elevated white blood cell (WBC) count with anemia and thrombocytopenia, hepatosplenomegaly, and lymphadenopathy; less common findings are skin infiltration and pleural effusions. The most frequent chromosomal abnormalities in T-PLL include 14q11.2, chromosome 8, and 11q rearrangements. Also deletions in the short arm of a chromosome 9 are reported in ~30% of T-PLL together with other aberrations. Here we report a childhood T-PLL case with a de novo del(9)(p13) as sole acquired anomaly leading to monosomy of the tumor suppressor gene CDKN2A (cyclin-dependent kinase inhibitor 2A). Also, to the best of our knowledge this is the first case of a childhood T-PLL with this aberration.

5.
Mol Cytogenet ; 6(1): 33, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23985162

ABSTRACT

BACKGROUND: Plasma cell leukemia (PCL) is a rare lymphoproliferative disorder, accounting for 1-2% of all plasma cell neoplasms, characterized by the presence of >2 × 109/l of plasma cells circulating in the peripheral blood, and exists in two forms: primary PCL (pPCL, 60% of the cases), and secondary PCL (sPCL), the latter being a leukemic transformation in patients with a previously diagnosed multiple myeloma. PCL is an aggressive disease with poor prognosis and a short median survival of 7 months. RESULTS: Here, we report a pPCL case with hepatosplenomegaly, anemia, thrombocytopenia, fever, fatigue, weight loss, and plasma cell count up to 60% in peripheral blood and 80% in bone marrow. Immunophenotype was compatible with PCL. A del(9)(p22.3) was characterized using banding cytogenetics and array-proven multicolor banding (aMCB), the latter being of enormous significance to characterize breakpoint regions in detail. CONCLUSION: To the best of our knowledge, this is the first report of pPCL associated with a partially monosomy 9pter to 9p22.3 as a sole chromosomal abnormality.

6.
Expert Rev Mol Diagn ; 13(3): 251-5, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23570403

ABSTRACT

Multicolor FISH (mFISH) assays are currently indispensable for a precise description of derivative chromosomes. Routine application of such techniques on human chromosomes started in 1996 with the simultaneous use of all 24 human whole-chromosome painting probes in multiplex-FISH and spectral karyotyping. Since then, multiple approaches for chromosomal differentiation based on multicolor-FISH (MFISH) assays have been developed. Predominantly, they are applied to characterize marker or derivative chromosomes identified in conventional banding analysis. Since the introduction of array-based comparative genomic hybridization (aCGH), mFISH is also applied to verify and further delineate aCGH-detected aberrations. For the latter, it is important to consider the fact that aCGH cannot detect or characterize balanced rearrangements, which are important to be resolved in detail in infertility diagnostics. In addition, mFISH is necessary to distinguish different imbalanced situations detectable in aCGH; small supernumerary marker chromosomes have to be differentiated from insertions or unbalanced translocations. This review presents an overview on the available mFISH methods and their applications in pre- and post-natal clinical genetics.


Subject(s)
Genetic Diseases, Inborn/diagnosis , In Situ Hybridization, Fluorescence/methods , Chromosomes, Human/genetics , Comparative Genomic Hybridization , Cytogenetic Analysis/methods , Genetic Diseases, Inborn/genetics , Humans , Interphase/genetics , Prenatal Diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...