Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 210: 12-24, 2019 07.
Article in English | MEDLINE | ID: mdl-31048198

ABSTRACT

In the past decade, calcium phosphate (CaP) ceramics have emerged as alternatives to autologous bone grafts for the treatment of large, critical-sized bone defects. In order to be effective in the regeneration of such defects, ceramics must show osteoinductive behaviour, defined as the ability to induce de novo heterotopic bone formation. While a set of osteoinductive CaP ceramics has been developed, the exact processes underlying osteoinduction, and the role of the physical and chemical properties of the ceramics, remain largely unknown. Previous studies have focused on the role of the transcriptome to shed light on the mechanism of osteoinduction at the mRNA level. To complement these studies, a proteomic analysis was performed to study the behaviour of hMSCs on osteoinductive and non-osteoinductive CaPs. The results of this analysis suggest that plasma cell glycoprotein 1 (PC-1), encoded by the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene, plays a key role in the process of osteoinduction by CaP ceramics. Validation experiments have confirmed that indeed, the mRNA expression of ENPP1 and the production of PC-1 are higher on osteoinductive than on non-osteoinductive CaP ceramics, a trend that was also observed for other osteogenic markers such as bone morphogenetic protein 2 (BMP2) and osteopontin (OPN), but not for alkaline phosphatase (ALP). Our results also showed that the expression of PC-1 is restricted to those cells which are in direct contact with the CaP ceramic surface, plausibly due to the localised depletion of calcium and inorganic phosphate ions from the supersaturated cell culture medium as CaP crystallises on the ceramic surface. Replicating the surface of the osteoinductive ceramic in polystyrene resulted in a significant decrease in ENPP1 expression, suggesting that surface structural properties alone are not sufficient to induce ENPP1 expression. Finally, knocking down ENPP1 expression in hMSCs resulted in increased BMP2 expression, both at the mRNA and protein level, suggesting that ENPP1 is a negative regulator of BMP-2 signalling. Taken together, this study shows, for the first time, that ENPP1/PC-1 plays an important role in CaP-induced osteogenic differentiation of hMSCs and thus possibly osteoinduction by CaP ceramics. Furthermore, we have identified a crucial role for the interfacial (chemical) events occurring on the CaP ceramic surface in the process of osteoinduction. This knowledge can contribute to the development of new bone graft substitutes, with improved osteoinductive potential.


Subject(s)
Calcium Phosphates/pharmacology , Ceramics/pharmacology , Osseointegration/drug effects , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Animals , Bone Morphogenetic Protein 2/metabolism , Calcium/analysis , Cells, Cultured , Collagen/pharmacology , Humans , Mesenchymal Stem Cells/cytology , Phosphoric Diester Hydrolases/genetics , Phosphorus/analysis , Proteomics , Pyrophosphatases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Reproducibility of Results
2.
Biomaterials ; 167: 191-204, 2018 06.
Article in English | MEDLINE | ID: mdl-29571054

ABSTRACT

The role that biomaterials play in the clinical treatment of damaged organs and tissues is changing. While biomaterials used in permanent medical devices were required to passively take over the function of a damaged tissue in the long term, current biomaterials are expected to trigger and harness the self-regenerative potential of the body in situ and then to degrade, the foundation of regenerative medicine. To meet these different requirements, it is imperative to fully understand the interactions biomaterials have with biological systems, in space and in time. This knowledge will lead to a better understanding of the regenerative capabilities of biomaterials aiding their design with improved functionalities (e.g. biocompatibility, bioactivity). Proteins play a pivotal role in the interaction between biomaterials and cells or tissues. Protein adsorption on the material surface is the very first event of this interaction, which is determinant for the subsequent processes of cell growth, differentiation, and extracellular matrix formation. Against this background, the aim of the current review is to provide insight in the current knowledge of the role of proteins in cell-biomaterial and tissue-biomaterial interactions. In particular, the focus is on proteomics studies, mainly using mass spectrometry, and the knowledge they have generated on protein adsorption of biomaterials, protein production by cells cultured on materials, safety and efficacy of new materials based on nanoparticles and the analysis of extracellular matrices and extracellular matrix-derived products. In the outlook, the potential and limitations of this approach are discussed and mass spectrometry imaging is presented as a powerful technique that complements existing mass spectrometry techniques by providing spatial molecular information about the material-biological system interactions.


Subject(s)
Biocompatible Materials/metabolism , Mass Spectrometry/methods , Proteins/metabolism , Proteomics/methods , Adsorption , Animals , Biocompatible Materials/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Humans , Proteins/chemistry
3.
Acta Biomater ; 17: 1-15, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25676583

ABSTRACT

The biological performance of bone graft substitutes based on calcium phosphate bioceramics is dependent on a number of properties including chemical composition, porosity and surface micro- and nanoscale structure. However, in contemporary bioceramics these properties are interlinked, therefore making it difficult to investigate the individual effects of each property on cell behavior. In this study we have attempted to investigate the effects of calcium and inorganic phosphate ions independent from one another by preparing composite materials with polylactic acid (PLA) as a polymeric matrix and calcium carbonate or sodium phosphate salts as fillers. Clinically relevant bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on these composites and proliferation, osteogenic differentiation and ECM mineralization were investigated with time and were compared to plain PLA control particles. In parallel, cells were also cultured on conventional cell culture plates in media supplemented with calcium or inorganic phosphate to study the effect of these ions independent of the 3D environment created by the particles. Calcium was shown to increase proliferation of cells, whereas both calcium and phosphate positively affected alkaline phosphatase enzyme production. QPCR analysis revealed positive effects of calcium and of inorganic phosphate on the expression of osteogenic markers, in particular bone morphogenetic protein-2 and osteopontin. Higher levels of mineralization were also observed upon exposure to either ion. Effects were similar for cells cultured on composite materials and those cultured in supplemented media, although ion concentrations in the composite cultures were lower. The approach presented here may be a valuable tool for studying the individual effects of a variety of soluble compounds, including bioinorganics, without interference from other material properties.


Subject(s)
Biocompatible Materials/chemistry , Calcium Phosphates/chemistry , Calcium/chemistry , Mesenchymal Stem Cells/cytology , Phosphates/chemistry , Alkaline Phosphatase/metabolism , Bone Morphogenetic Protein 2/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Ceramics , Humans , Ions , Lactic Acid/chemistry , Materials Testing , Microscopy, Electron, Scanning , Osteogenesis , Osteopontin/metabolism , Particle Size , Polyesters , Polymers/chemistry
4.
J Immunol ; 181(1): 736-45, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18566440

ABSTRACT

Acrolein is a reactive unsaturated aldehyde that is produced during endogenous oxidative processes and is a major bioactive component of environmental pollutants such as cigarette smoke. Because in vitro studies demonstrate that acrolein can inhibit neutrophil apoptosis, we evaluated the effects of in vivo acrolein exposure on acute lung inflammation induced by LPS. Male C57BL/6J mice received 300 microg/kg intratracheal LPS and were exposed to acrolein (5 parts per million, 6 h/day), either before or after LPS challenge. Exposure to acrolein either before or after LPS challenge did not significantly affect the overall extent of LPS-induced lung inflammation, or the duration of the inflammatory response, as observed from recovered lung lavage leukocytes and histology. However, exposure to acrolein after LPS instillation markedly diminished the LPS-induced production of several inflammatory cytokines, specifically TNF-alpha, IL-12, and the Th1 cytokine IFN-gamma, which was associated with reduction in NF-kappaB activation. Our data demonstrate that acrolein exposure suppresses LPS-induced Th1 cytokine responses without affecting acute neutrophilia. Disruption of cytokine signaling by acrolein may represent a mechanism by which smoking contributes to chronic disease in chronic obstructive pulmonary disease and asthma.


Subject(s)
Acrolein/administration & dosage , Acrolein/pharmacology , Cytokines/biosynthesis , Lipopolysaccharides/pharmacology , Lung Diseases/immunology , Lung Diseases/microbiology , Neutrophils/pathology , Acute Disease , Administration, Inhalation , Animals , Apoptosis/drug effects , Cytokines/immunology , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lung Diseases/chemically induced , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...