Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 163: 111957, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33440264

ABSTRACT

Environmental conditions influence fecal indicator bacteria (FIB) levels, which are routinely used to characterize recreational water quality. This study examined 15 years of environmental and FIB data at Puntarenas and Jacó beach, Costa Rica. FIB relationships with sea level, wave height, precipitation, direct normal irradiance (DNI), wind, and turbidity were analyzed. Pearson's correlations identified lags between 24 and 96 h among environmental parameters and FIB. Multiple linear regression models composed of environmental parameters explained 24% and 27% of fecal coliforms and enterococci variability in Jacó, respectively. Puntarenas's models explained 17-26% of fecal coliforms and 12-18% enterococci variability. Precipitation, sea level anomalies, and wave height most frequently explained FIB variability. Hypothesis testing often identified significant differences in precipitation, wave height, daily sea level anomalies, and maximum sea level 24 h prior between days with and without FIB threshold exceedance. Unexpected FIB interactions with DNI, sea level, and turbidity highlight the importance of future investigations.


Subject(s)
Bathing Beaches , Water Quality , Enterococcus , Environmental Monitoring , Feces , Water Microbiology
2.
Environ Manage ; 60(2): 323-339, 2017 08.
Article in English | MEDLINE | ID: mdl-28484828

ABSTRACT

Management of coastal and marine natural resources presents a number of challenges as a growing global population and a changing climate require us to find better strategies to conserve the resources on which our health, economy, and overall well-being depend. To evaluate the status and trends in changing coastal resources over larger areas, managers in government agencies and private stakeholders around the world have increasingly turned to remote sensing technologies. A surge in collaborative and innovative efforts between resource managers, academic researchers, and industry partners is becoming increasingly vital to keep pace with evolving changes of our natural resources. Synoptic capabilities of remote sensing techniques allow assessments that are impossible to do with traditional methods. Sixty years of remote sensing research have paved the way for resource management applications, but uncertainties regarding the use of this technology have hampered its use in management fields. Here we review examples of remote sensing applications in the sectors of coral reefs, wetlands, water quality, public health, and fisheries and aquaculture that have successfully contributed to management and decision-making goals.


Subject(s)
Conservation of Natural Resources/methods , Coral Reefs , Fisheries , Remote Sensing Technology/methods , Wetlands , Climate Change , Decision Making , Humans , Population Growth , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL