Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Strength Cond Res ; 35(8): 2145-2150, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-30908371

ABSTRACT

ABSTRACT: Brandenberger, KJ, Warren, GL, Ingalls, CP, Otis, JS, and Doyle, JA. Downhill running impairs activation and strength of the elbow flexors. J Strength Cond Res 35(8): 2145-2150, 2021-The purpose of this study was to determine if knee extensor injury induced by 1 hour of downhill running attenuated force production in the elbow flexors. Subjects completed either downhill running for 1 hour (injured group; n = 6) or sedentary behavior (control group; n = 6). Strength and voluntary activation (%VA) were measured by isometric twitch interpolation of the elbow flexor and knee extensor muscles at the following time points in relation to the injury: before injury (Pre), after injury (Post), 24 hours after injury (24Post), and 48 hours after injury (48Post). Mean (±SE) knee extensor strength was significantly reduced (53.5 ± 9.9%) Post and remained reduced at 24Post and 48Post in the injury group. Knee extensor muscle twitch strength was reduced Post and 24Post after the downhill run (p < 0.022). Elbow flexor muscle strength was significantly reduced Post (13.2 ± 3.9%) and 24Post (17.3 ± 4.0%). Elbow flexor muscle twitch strength was not significantly different at any time point. Elbow flexor muscle %VA was not significantly reduced compared with Pre, at Post (16.2 ± 5.1%), 24Post (20.9 ± 6.7%), or 48Post (12.9 ± 4.5%). A 1-hour downhill run significantly injured the knee extensors. The elbow flexor muscles remained uninjured, but strength of these muscles was impaired by reduced %VA. These data suggest muscle injury can lead to prolonged strength deficits in muscles distant from the injury and should be accounted for when scheduling training that may lead to delayed-onset muscle soreness.


Subject(s)
Elbow , Muscle Strength , Humans , Knee , Knee Joint , Muscle, Skeletal
2.
J Appl Physiol (1985) ; 92(1): 18-24, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11744638

ABSTRACT

It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.


Subject(s)
Heart Failure/physiopathology , Muscle, Skeletal/physiology , Animals , Blotting, Western , Calcium/metabolism , Calcium-Transporting ATPases/biosynthesis , Female , Heart Failure/metabolism , Heart Ventricles/pathology , Muscle, Skeletal/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Organ Size/physiology , Rats , Rats, Sprague-Dawley , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases
SELECTION OF CITATIONS
SEARCH DETAIL
...