Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 17(6): 1884-1898, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32271581

ABSTRACT

We developed a practical synthetic method for fluorine-18 (18F)-labeled pitavastatin ([18F]PTV) as a positron emission tomography (PET) tracer to assess hepatobiliary transporter activity and conducted a PET scan as a preclinical study for proof-of-concept in rats. This method is a one-pot synthesis involving aromatic 18F-fluorination of an arylboronic acid ester followed by deprotection under acidic conditions, which can be reproduced in general clinical sites equipped with a standard radiolabeling system due to the simplified procedure. PET imaging confirmed that intravenously administered [18F]PTV was rapidly accumulated in the liver and gradually transferred into the intestinal lumen through the bile duct. Radiometabolite analysis showed that [18F]PTV was metabolically stable, and 80% of the injected dose was detected as the unchanged form in both blood and bile. We applied integration plot analysis to assess tissue uptake clearance (CLuptake, liver and CLuptake, kidney) and canalicular efflux clearance (CLint, bile), and examined the effects of inhibitors on membrane transport. Treatment with rifampicin, an organic anion transporting polypeptide inhibitor, significantly reduced CLuptake, liver and CLuptake, kidney to 44% and 64% of control, respectively. In contrast, Ko143, a breast cancer resistance protein inhibitor, did not affect CLuptake, liver but significantly reduced CLint, bile to 39% of control without change in [18F]PTV blood concentration. In addition, we found decreased CLuptake, liver and increased CLint, bile in Eisai hyperbilirubinemic rats in response to altered expression levels of transporters. We expect that [18F]PTV can be translated into clinical application, as our synthetic method does not need special apparatus in the radiolabeling system and PET scan with [18F]PTV can quantitatively evaluate transporter activity in vivo.


Subject(s)
Fluorine Radioisotopes/chemistry , Quinolines/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 2/drug effects , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Blotting, Western , Chromatography, Thin Layer , Liver/drug effects , Liver/metabolism , Male , Molecular Structure , Neoplasm Proteins/drug effects , Neoplasm Proteins/metabolism , Organic Anion Transporters/drug effects , Organic Anion Transporters/metabolism , Positron-Emission Tomography , Rats , Rats, Sprague-Dawley , Rifampin/chemistry
2.
Behav Brain Res ; 346: 96-104, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29203334

ABSTRACT

Olfactory signals, including the scent of urine, are thought to be processed by specific brain regions, such as the medial amygdala (Me), and regulate sexual behavior in a sex-dependent manner. We aimed to reveal the sex-specific neural circuit from the accessory olfactory bulb (AOB) to Me by using a transgenic mouse. We quantified the long-lasting green fluorescent protein (GFP) expression profile, which was controlled by the c-fos promotor in a sex-dependent manner by the scent of urine. Female urine predominantly activated neurons of the posterodorsal medial amygdala (MePD) in male mice and the posteroventral medial amygdala (MePV) in female mice. Male urine, in contrast, generated the opposite pattern of activation in the Me. Secondary, the selective artificial activation of these circuits was used to examine their specific behavioral function, by using a dual Cre-loxP viral infection. AAV-hSyn-FLEX-hM3Dq-EGFP-the designer receptor exclusively activated by a designer drug-was infused into the AOB after infection with trans-synaptic AAV(DJ)-CMV-mCherry-2A-Cre-TTC into either the MePD or the MePV. Double virus-transfected mice were injected with hM3Dq activator and their sexual behavior was monitored. However, selective activation of sex-dependent circuits, i.e., the AOB-MePD or AOB-MePV, did not significantly alter mounting or attack behavior in male mice. There were clear sex differences in the pheromone conveying circuits in the AOB-Me of mice. The sex-dependent functional activation of the Me, however, no effect on behavior. This suggests that a diverse number of nuclei and brain areas are likely to function in concert to successfully facilitate sexual and aggressive behaviors.


Subject(s)
Amygdala/physiology , Neurons/physiology , Olfactory Bulb/physiology , Olfactory Perception/physiology , Sex Characteristics , Social Perception , Amygdala/cytology , Animals , Early Growth Response Protein 1/metabolism , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/drug effects , Olfactory Bulb/cytology , Olfactory Bulb/drug effects , Olfactory Pathways/cytology , Olfactory Pathways/physiology , Social Behavior , Urine
SELECTION OF CITATIONS
SEARCH DETAIL
...