Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
EMBO Rep ; 25(7): 3137-3159, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38877171

ABSTRACT

Junctions between the endoplasmic reticulum (ER) and the outer membrane of the nuclear envelope (NE) physically connect both organelles. These ER-NE junctions are essential for supplying the NE with lipids and proteins synthesized in the ER. However, little is known about the structure of these ER-NE junctions. Here, we systematically study the ultrastructure of ER-NE junctions in cryo-fixed mammalian cells staged in anaphase, telophase, and interphase by correlating live cell imaging with three-dimensional electron microscopy. Our results show that ER-NE junctions in interphase cells have a pronounced hourglass shape with a constricted neck of 7-20 nm width. This morphology is significantly distinct from that of junctions within the ER network, and their morphology emerges as early as telophase. The highly constricted ER-NE junctions are seen in several mammalian cell types, but not in budding yeast. We speculate that the unique and highly constricted ER-NE junctions are regulated via novel mechanisms that contribute to ER-to-NE lipid and protein traffic in higher eukaryotes.


Subject(s)
Endoplasmic Reticulum , Mitosis , Nuclear Envelope , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Nuclear Envelope/metabolism , Nuclear Envelope/ultrastructure , Humans , Animals , Cell Nucleus/metabolism , HeLa Cells , Interphase , Telophase
2.
PLoS One ; 19(5): e0303833, 2024.
Article in English | MEDLINE | ID: mdl-38768175

ABSTRACT

Fatigue can lead to several health issues and is particularly prevalent among elderly individuals with chronic inflammatory conditions. Ninjin'yoeito, a traditional Japanese herbal medicine, is used to address fatigue and malaise, anorexia, and anemia. This study aimed to examine whether relieving inflammation in the brain and skeletal muscle of senescence-accelerated mice prone 8 (SAMP8) could reduce fatigue-like conditions associated with aging. First, SAMP8 mice were divided into two groups, with and without ninjin'yoeito treatment. The ninjin'yoeito-treated group received a diet containing 3% ninjin'yoeito for a period of 4 months starting at 3 months of age. At 7 months of age, all mice underwent motor function, treadmill fatigue, and behavioral tests. They were then euthanized and the skeletal muscle weight, muscle cross-sectional area, and concentration of interleukin (IL)-1ß and IL-1 receptor antagonist (IL-1RA) in both the brain and skeletal muscle were measured. The results showed that the ninjin'yoeito-treated group had higher motor function and spontaneous locomotor activity than the untreated group did and ran for significantly longer in the treadmill fatigue test. Moreover, larger muscle cross-sectional area, lower IL-1ß concentrations, and higher IL-1RA concentrations were observed in both the brain and skeletal muscle tissues of the ninjin'yoeito-treated group than in the untreated group. The results suggest that ninjin'yoeito improves age-related inflammatory conditions in both the central and peripheral tissues and reduces fatigue.


Subject(s)
Aging , Brain , Drugs, Chinese Herbal , Fatigue , Inflammation , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Aging/drug effects , Fatigue/drug therapy , Brain/drug effects , Brain/metabolism , Brain/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Inflammation/drug therapy , Inflammation/pathology , Interleukin-1beta/metabolism
3.
Methods Cell Biol ; 187: 73-97, 2024.
Article in English | MEDLINE | ID: mdl-38705631

ABSTRACT

Cells are dynamic machines that continuously change their architecture to adapt and respond to extracellular and intracellular stimuli. Deciphering dynamic processes with nanometer-scale resolution inside cells is critical for mechanistic understanding. Here, we present a protocol that enables the in situ study of dynamic changes in intracellular structures under close-to-native conditions at high spatiotemporal resolution. Importantly, the cells are grown, transported, and imaged in a chamber in which environmental conditions such as temperature and gas (e.g., carbon dioxide or oxygen) concentration can be controlled. We demonstrate this protocol to quantify ultrastructural changes that occur during the cell cycle of cultured mammalian cells. The environment control system opens up the possibility of applying this method to primary cells, tissues, and organoids by adjusting environmental conditions.


Subject(s)
Cell Cycle , Humans , Animals , Microscopy, Electron/methods
4.
Front Aging Neurosci ; 16: 1337397, 2024.
Article in English | MEDLINE | ID: mdl-38414630

ABSTRACT

Introduction: Cerebral white matter hyperintensities (WMHs) are commonly found in the aging brain and have been implicated in the initiation and severity of many central nervous system diseases. Furthermore, an increased WMH volume indicates reduced brain health in older adults. This study investigated the association between WMH volume and physical activity in older adults with depressive symptoms (DS) and mild memory impairment (MMI). Factors associated with the WMH volume were also investigated. Methods: A total of 57 individuals aged over 65 years with DS and MMI were included in this study. The participants underwent magnetic resonance imaging to quantify WMH volumes. After WMH volume was accumulated, normalized to the total intracranial volume (TIV), the percentage of WMH volume was calculated. In addition, all participants wore a triaxial accelerometer for 2 weeks, and the average daily physical activity and number of steps were measured. The levels of blood biomarkers including cortisol, interleukin-6 (IL-6), brain-derived insulin-like growth factor-1, and brain-derived neurotrophic factor were measured. Motor and cognitive functions were also assessed. Results: Faster maximum walking speed and longer time spent engaged in moderate physical activity were associated with a smaller percent of WMH volume, whereas higher serum IL-6 levels were associated with a larger percent of WMH volume. The number of steps per day, time spent engaged in low levels of physical activity, cognitive function, and all other measured biomarkers were not significantly associated with percent of WMH volume. Discussion: Higher blood inflammatory cytokine levels, shorter duration of moderate physical activity, and lower maximum walking speed were associated with a higher percent of WMH volume. Our results provide useful information for maintaining brain health in older adults at a high risk of developing dementia and may contribute to the development of preventive medicine for brain health.

5.
Nucleus ; 15(1): 2299632, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38238284

ABSTRACT

The nuclear envelope (NE) regulates nuclear functions, including transcription, nucleocytoplasmic transport, and protein quality control. While the outer membrane of the NE is directly continuous with the endoplasmic reticulum (ER), the NE has an overall distinct protein composition from the ER, which is crucial for its functions. During open mitosis in higher eukaryotes, the NE disassembles during mitotic entry and then reforms as a functional territory at the end of mitosis to reestablish nucleocytoplasmic compartmentalization. In this review, we examine the known mechanisms by which the functional NE reconstitutes from the mitotic ER in the continuous ER-NE endomembrane system during open mitosis. Furthermore, based on recent findings indicating that the NE possesses unique lipid metabolism and quality control mechanisms distinct from those of the ER, we explore the maintenance of NE identity and homeostasis during interphase. We also highlight the potential significance of membrane junctions between the ER and NE.


Subject(s)
Nuclear Envelope , Nuclear Pore , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Endoplasmic Reticulum/metabolism , Mitosis , Active Transport, Cell Nucleus
6.
Aging (Albany NY) ; 15(21): 11740-11763, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37950725

ABSTRACT

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor that serves as a cellular housekeeper; it also controls energy homeostasis and stress resistance. Thus, correct regulation of this factor can enhance health and survival. AMPK signaling may have a critical role in aging-associated brain diseases. Some in vitro studies have shown that 1,5-anhydro-D-fructose (1,5-AF) induces AMPK activation. In the present study, we experimentally evaluated the effects of 1,5-AF on aging-associated brain diseases in vivo using an animal model of acute ischemic stroke (AIS), stroke-prone spontaneously hypertensive rats (SHRSPs), and the spontaneous senescence-accelerated mouse-prone 8 (SAMP8) model. In the AIS model, intraperitoneal injection of 1,5-AF reduced cerebral infarct volume, neurological deficits, and mortality. In SHRSPs, oral administration of 1,5-AF reduced blood pressure and prolonged survival. In the SAMP8 model, oral administration of 1,5-AF alleviated aging-related decline in motor cognitive function. Although aging reduced the expression levels of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) and brain-derived neurotrophic factor (BDNF), we found that 1,5-AF activated AMPK, which led to upregulation of the PGC-1α/BDNF pathway. Our results suggest that 1,5-AF can induce endogenous neurovascular protection, potentially preventing aging-associated brain diseases. Clinical studies are needed to determine whether 1,5-AF can prevent aging-associated brain diseases.


Subject(s)
Ischemic Stroke , Transcription Factors , Rats , Mice , Animals , Transcription Factors/metabolism , AMP-Activated Protein Kinases/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Adenosine Monophosphate , PPAR gamma/metabolism , Aging , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
7.
Arthritis Res Ther ; 25(1): 168, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37710278

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease associated with aging, which often leads to joint stiffness and disability. Exercise is one of the most important non-pharmacological treatments and is prescribed as an indispensable treatment for OA. However, whether physical exercise is beneficial for preventing the progression of OA symptoms with age is poorly understood. We investigated the effects of exercise on spontaneously developed knee OA using male senescence-accelerated mouse prone 8 (SAMP8). METHODS: To examine age-related changes in the knee joints of SAMP8, knee articular cartilage changes, synovitis, knee joint flexion and extension angles, swelling, walking ability, and quadriceps muscle atrophy were analyzed at 3, 5, 7, and 9 months. SAMP8 were required to run at a speed of 10 m/min for 15 min/day from 7 to 9 months of age. The knee joint pathologies and symptoms of exercising and non-exercising mice were compared by histological, immunohistochemical, and morphometrical analyses. RESULTS: The mice presented with various histological changes, including cartilage destruction, osteocyte formation, synovitis, declined joint angles, and swelling. Notably, medial and posterior cartilage destruction was more severe than that of the lateral and anterior cartilage. Knee joint angles were significantly correlated with the histological scores (modified Mankin and OARSI, osteophyte formation and synovial lining cell layer). Exercise did not attenuate cartilage degeneration in the medial and posterior tibial plateau, although the articular cartilage of the anterior and lateral tibial plateau and its histological scores was remained and significantly improved, respectively, by exercise. Exercise suppressed the age-related decline of collagen type II-positive areas in the remaining articular cartilage and improved the OA symptoms. Exercise reduced the expression of monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-α positive macrophages in the synovium. CONCLUSION: This study revealed that SAMP8 developed spontaneous knee OA with age, which resembled the disease symptoms in humans. Low-intensity exercise temporarily alleviated degeneration of the remaining cartilage, synovitis, and age-related decreases in knee flexion angle, stride length, and muscle atrophy in SAMP8. However, exercise during OA progression with age may cause mechanical stress that could be both beneficial and detrimental to joint health.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Synovitis , Humans , Mice , Male , Animals , Infant , Osteoarthritis, Knee/therapy , Knee Joint , Walking
8.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37591724

ABSTRACT

Different types of anaphase bridges are reported to form between segregating chromosomes during cell division. Previous studies using laser microsurgery suggested that elastic tethers connect the telomeres of separating anaphase chromosomes in many animal meiotic and mitotic cells. However, structural evidence is lacking for their existence. In this study, by correlating live imaging with electron tomography, we examined whether visible structures connect separating telomeres in meiosis I of crane-fly primary spermatocytes. We found structures extending between separating telomeres in all stages of anaphase. The structures consist of two components: one is darkly stained, looking somewhat like chromatin, whereas the other is more lightly stained, appearing filamentous. Although in early anaphase both structures extend between telomeres, in later anaphase, the darker structure extends shorter distances from the telomeres but the lighter structure still extends between the separating telomeres. From these observations, we deduced that these structures represent the "tethers" inferred from the laser-cutting experiments. Because elastic tethers have been detected in a variety of animal cells, they probably are present during anaphase in all animal cells.


Subject(s)
Spermatocytes , Telomere , Animals , Male , Telomere/genetics , Chromatin/genetics , Meiosis , Cytoskeleton
9.
Neurosci Lett ; 808: 137297, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37182575

ABSTRACT

Physical exercise is beneficial for preventing Alzheimer's disease (AD) and cognitive decline through several mechanisms, including suppression of neuroinflammation and neuronal loss in the hippocampus. Despite these exercise-induced benefits in AD pathology, less attention has been paid to the importance of maintaining exercise and the consequences of detraining. This study aimed to investigate the effects of early exercise intervention and detraining on age-related cognitive decline and its protective mechanisms using senescence-accelerated mouse prone 8 (SAMP8). These mice were divided to four groups: no-exercise (No-Ex, n = 9), 4 months (4 M)-detraining (n = 11), 2 months (2 M)-detraining (n = 11), and long-term exercise (LT-Ex, n = 13). Age-related cognitive decline was prevented in the LT-Ex group compared with the No-Ex group through the suppression of neuronal loss, enhanced brain-derived neurotrophic factor (BDNF), and inhibition of neuroinflammation corresponding to reduced M1 and increased M2 microglia in the hippocampus. No significant differences were observed in cognitive function between the detraining and No-Ex groups. However, the 2 M-detraining group showed increased BDNF positive area in the CA1 region and the enhancement of anti-inflammatory M2 phenotype microglia. In contrast, no statistically beneficial exercise-induced changes in the hippocampus were observed in the 4 M-detrainig group. These results showed that early exercise intervention prevented age-related cognitive deficits in AD progression by suppressing neuronal loss and neuroinflammation in the hippocampus. Exercise-induced benefits, including the anti-inflammation in the hippocampus, may be retained after exercise cessation, even if exercise-induced beneficial effects decline in a time-dependent manner.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Animals , Humans , Brain-Derived Neurotrophic Factor/metabolism , Neuroinflammatory Diseases , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/pathology , Cognition , Hippocampus , Alzheimer Disease/pathology , Exercise Therapy , Disease Models, Animal
10.
Sci Rep ; 13(1): 2158, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750711

ABSTRACT

Remote ischemic perconditioning (RIPerC) is a novel neuroprotective method against cerebral infarction that has shown efficacy in animal studies but has not been consistently neuroprotective in clinical trials. We focused on the temporal regulation of ischemia-reperfusion by RIPerC to establish an optimal method for RIPerC. Rats were assigned to four groups: 10 min ischemia, 5 min reperfusion; 10 min ischemia, 10 min reperfusion; 5 min ischemia, 10 min reperfusion; and no RIPerC. RIPerC interventions were performed during ischemic stroke, which was induced by a 60-min left middle cerebral artery occlusion. Infarct volume, sensorimotor function, neurological deficits, and cellular expressions of brain-derived neurotrophic factor (BDNF), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and caspase 3 were evaluated 48 h after the induction of ischemia. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) was also performed. RIPerC of 10 min ischemia/10 min reperfusion, and 5 min ischemia/10 min reperfusion decreased infarct volume, improved sensorimotor function, decreased Bax, caspase 3, and TUNEL-positive cells, and increased BDNF and Bcl-2 expressions. Our findings suggest RIPerC with a reperfusion time of approximately 10 min exerts its neuroprotective effects via an anti-apoptotic mechanism. This study provides important preliminary data to establish more effective RIPerC interventions.


Subject(s)
Brain Ischemia , Reperfusion Injury , Rats , Animals , Rats, Sprague-Dawley , Brain-Derived Neurotrophic Factor , Caspase 3 , bcl-2-Associated X Protein , Ischemia , Infarction , Cerebral Infarction , Reperfusion Injury/pathology , Apoptosis , Infarction, Middle Cerebral Artery
11.
Nature ; 613(7944): 575-581, 2023 01.
Article in English | MEDLINE | ID: mdl-36599981

ABSTRACT

Understanding how the nuclear pore complex (NPC) is assembled is of fundamental importance to grasp the mechanisms behind its essential function and understand its role during the evolution of eukaryotes1-4. There are at least two NPC assembly pathways-one during the exit from mitosis and one during nuclear growth in interphase-but we currently lack a quantitative map of these events. Here we use fluorescence correlation spectroscopy calibrated live imaging of endogenously fluorescently tagged nucleoporins to map the changes in the composition and stoichiometry of seven major modules of the human NPC during its assembly in single dividing cells. This systematic quantitative map reveals that the two assembly pathways have distinct molecular mechanisms, in which the order of addition of two large structural components, the central ring complex and nuclear filaments are inverted. The dynamic stoichiometry data was integrated to create a spatiotemporal model of the NPC assembly pathway and predict the structures of postmitotic NPC assembly intermediates.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Humans , Interphase , Mitosis , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Spectrometry, Fluorescence
12.
J Ethnopharmacol ; 302(Pt B): 115927, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36402237

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ninjin'yoeito (NYT), a traditional Japanese Kampo medicine consisting of 12 herbs, has been reported to improve cognitive dysfunction, depression, and neurological recovery in patients with neurovascular diseases such as Alzheimer's disease and stroke. Several studies have reported that the NYT components exert neurotrophic, neurogenic, and neuroprotective effects. In addition, exercise enhances neuroprotection and functional recovery after stroke. Rehabilitative exercises and pharmacological agents induce neurophysiological plasticity, leading to functional recovery in stroke patients. These reports indicate that NYT treatment and exercise may promote functional recovery following stroke through their beneficial effects. However, no study has determined the effects of NYT and the possible mechanisms of neurorepair and functional recovery after stroke. AIM OF THE STUDY: This study aimed to investigate the combined effects of NYT and exercise on neuroprotection and functional recovery and the underlying mechanisms in a rat ischemic stroke model. MATERIALS AND METHODS: Stroke was induced with 60-min middle cerebral artery occlusion (MCAO) followed by reperfusion in adult male Sprague-Dawley rats. After stroke, the rats were assigned to four groups: ischemia reperfusion (IR), NYT, exercise (Ex), and NYT + Ex. NYT-treated rats were fed a diet containing 1% NYT one day after stroke. Exercise was performed using a motorized treadmill for 5 days a week (8-15 m/min, 20 min/day), starting 3 days after stroke. The NYT treatment and exercise were continued for 4 weeks after the stroke. Infarct volume, neurological deficits, sensorimotor functions, expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase A (TrkA) and B (TrkB), caspase-3 activity, and the p-Akt/Akt ratio were examined by immunohistochemistry and western blotting. RESULTS: Compared to the IR group, all treated groups indicated reduced infarct volumes. The NYT + Ex group showed significantly improved waking time and beam walking score compared with the IR group. The expression of NGF/TrkA/p-TrkA and BDNF/TrkB was significantly increased in the NYT + Ex group compared with those in the IR group, whereas the number of caspase-3 positive cells around the lesion was significantly lower in the NYT + Ex group than in the IR group. In addition, the ratio of p-Akt/Akt was significantly higher in the NYT + Ex group than in the IR group. CONCLUSIONS: This study suggests that NYT in combination with exercise provides neuroprotective effects and improves sensorimotor function by stimulating NGF/TrkA and BDNF/TrkB, and by activating the Akt pathway in ischemic stroke of rats. NYT may be an effective adjunctive agent in post-stroke rehabilitation.


Subject(s)
Ischemic Stroke , Medicine, Kampo , Neuroprotective Agents , Physical Conditioning, Animal , Animals , Male , Rats , Brain-Derived Neurotrophic Factor , Caspase 3 , Infarction , Ischemic Stroke/drug therapy , Nerve Growth Factor , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley
13.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232484

ABSTRACT

Physical frailty is an aging-related clinical syndrome involving decreases in body weight, mobility, activity, and walking speed that occurs in individuals with sarcopenia and is accelerated by increased oxidative stress. Ninjin'yoeito, a traditional Japanese Kampo medicine, is used for treating conditions, including anemia and physical weakness. Here, we investigated whether ninjin'yoeito could improve physical frailty by controlling oxidative stress in the senescence-accelerated mouse prone 8 (SAMP8) model. First, SAMP8 mice were divided into two groups, ninjin'yoeito treated and untreated, with the former consuming a diet containing 3% ninjin'yoeito from 3 months of age. At 7 months of age, body weight, motor function, locomotor activity, and mean walking speed were measured. Subsequently, mice were euthanized and measured for muscle weight, 8-hydroxy-2'-deoxyguanosine levels in muscle and brain, and cleaved caspase-3 expression in brain. The results showed reductions in weight, locomotor function, locomotion, and average walking speed in the untreated group, which were significantly improved by ninjin'yoeito. Furthermore, 8-hydroxy-2'-deoxyguanosine levels were reduced in muscle and brain from ninjin'yoeito-treated mice, compared with the levels in untreated mice; cleaved caspase-3 expression was similarly reduced in brain from the treated mice, indicating reduced apoptosis. Our findings suggest that ninjin'yoeito inhibits sarcopenia-based physical frailty through its antioxidant effects.


Subject(s)
Frailty , Sarcopenia , 8-Hydroxy-2'-Deoxyguanosine , Animals , Antioxidants , Body Weight , Caspase 3 , Disease Models, Animal , Drugs, Chinese Herbal , Mice , Sarcopenia/drug therapy
14.
Nature ; 609(7925): 183-190, 2022 09.
Article in English | MEDLINE | ID: mdl-35922507

ABSTRACT

Dividing eukaryotic cells package extremely long chromosomal DNA molecules into discrete bodies to enable microtubule-mediated transport of one genome copy to each of the newly forming daughter cells1-3. Assembly of mitotic chromosomes involves DNA looping by condensin4-8 and chromatin compaction by global histone deacetylation9-13. Although condensin confers mechanical resistance to spindle pulling forces14-16, it is not known how histone deacetylation affects material properties and, as a consequence, segregation mechanics of mitotic chromosomes. Here we show how global histone deacetylation at the onset of mitosis induces a chromatin-intrinsic phase transition that endows chromosomes with the physical characteristics necessary for their precise movement during cell division. Deacetylation-mediated compaction of chromatin forms a structure dense in negative charge and allows mitotic chromosomes to resist perforation by microtubules as they are pushed to the metaphase plate. By contrast, hyperacetylated mitotic chromosomes lack a defined surface boundary, are frequently perforated by microtubules and are prone to missegregation. Our study highlights the different contributions of DNA loop formation and chromatin phase separation to genome segregation in dividing cells.


Subject(s)
Chromatin , Microtubules , Mitosis , Acetylation , Chromatin/metabolism , Chromosome Segregation , DNA/metabolism , Histones/metabolism , Microtubules/metabolism , Phase Transition , Spindle Apparatus/metabolism
15.
Methods Mol Biol ; 2502: 493-512, 2022.
Article in English | MEDLINE | ID: mdl-35412258

ABSTRACT

In eukaryotic cells that undergo open mitosis, nuclear pore complex assembly proceeds via two distinct pathways: postmitotic and interphase assembly. Studying both assembly processes is challenging because postmitotic assembly is fast, interphase assembly is rare and sporadic, and assembly intermediates in both pathways are very small with a diameter below 100 nm. Here, we present a protocol for studying nuclear pore complex biogenesis in situ in cultured human cells in a spatiotemporally resolved and quantitative manner by combining live imaging with three-dimensional electron microscopy. The method described here can also be applied for studying other cell cycle-associated events with high spatiotemporal resolution.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Humans , Interphase , Microscopy, Electron , Mitosis , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism
16.
Int J Mol Sci ; 23(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35163163

ABSTRACT

Knee arthrofibrosis is a common complication of knee surgery, caused by excessive scar tissue, which results in functional disability. However, no curative treatment has been established. E8002 is an anti-adhesion material that contains L-ascorbic acid, an antioxidant. We aimed to evaluate the efficacy of E8002 for the prevention of knee arthrofibrosis in a rat model, comprising injury to the surface of the femur and quadriceps muscle 1 cm proximal to the patella. Sixteen male, 8-week-old Sprague Dawley rats were studied: in the Adhesion group, haemorrhagic injury was induced to the quadriceps and bone, and in the E8002 group, an adhesion-preventing film was implanted between the quadriceps and femur after injury. Six weeks following injury, the restriction of knee flexion owing to fibrotic scarring had not worsened in the E8002 group but had worsened in the Adhesion group. The area of fibrotic scarring was smaller in the E8002 group than in the Adhesion group (p < 0.05). In addition, the numbers of fibroblasts (p < 0.05) and myofibroblasts (p < 0.01) in the fibrotic scar were lower in the E8002 group. Thus, E8002 reduces myofibroblast proliferation and fibrotic scar formation and improves the range of motion of the joint in a model of knee injury.


Subject(s)
Ascorbic Acid/pharmacology , Cicatrix/prevention & control , Fibrosis/drug therapy , Joint Diseases/drug therapy , Knee Injuries/drug therapy , Knee Joint/drug effects , Polyesters/pharmacology , Tissue Adhesions/prevention & control , Animals , Cicatrix/metabolism , Cicatrix/pathology , Fibrosis/metabolism , Fibrosis/pathology , Joint Diseases/metabolism , Joint Diseases/pathology , Knee Injuries/metabolism , Knee Injuries/pathology , Knee Joint/metabolism , Knee Joint/pathology , Male , Membranes, Artificial , Range of Motion, Articular , Rats , Rats, Sprague-Dawley , Tissue Adhesions/metabolism , Tissue Adhesions/pathology
17.
Sci Rep ; 11(1): 19648, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608200

ABSTRACT

The gut microbiota has tremendous potential to affect the host's health, in part by synthesizing vitamins and generating nutrients from food that is otherwise indigestible by the host. 1,5-Anhydro-D-fructose (1,5-AF) is a monosaccharide with a wide range of bioactive potentials, including anti-oxidant, anti-inflammatory, and anti-microbial effects. Based on its potential benefits and minimal toxicity, it is anticipated that 1,5-AF will be used as a dietary supplement to support general health. However, the effects of 1,5-AF on the gut microbiota are yet to be clarified. Here, using an unbiased metagenomic approach, we profiled the bacterial taxa and functional genes in the caecal microbiota of mice fed a diet containing either 2% 1,5-AF or a reference sweetener. Supplementation with 1,5-AF altered the composition of the gut microbiota, enriching the proportion of Faecalibacterium prausnitzii. 1,5-AF also altered the metabolomic profile of the gut microbiota, enriching genes associated with nicotinamide adenine dinucleotide biosynthesis. These findings support the potential benefits of 1,5-AF, but further studies are required to clarify the impact of 1,5-AF on health and disease.


Subject(s)
Fructose/analogs & derivatives , Gastrointestinal Microbiome , Animals , Diet , Dietary Supplements , Fructose/metabolism , Fructose/pharmacology , Gastrointestinal Microbiome/drug effects , Metagenome , Metagenomics/methods , Mice , NAD/biosynthesis , Nutrients/biosynthesis , Vitamins/biosynthesis
18.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576111

ABSTRACT

Mitochondrial functional abnormalities or quantitative decreases are considered to be one of the most plausible pathogenic mechanisms of Parkinson's disease (PD). Thus, mitochondrial complex inhibitors are often used for the development of experimental PD. In this study, we used rotenone to create in vitro cell models of PD, then used these models to investigate the effects of 1,5-anhydro-D-fructose (1,5-AF), a monosaccharide with protective effects against a range of cytotoxic substances. Subsequently, we investigated the possible mechanisms of these protective effects in PC12 cells. The protection of 1,5-AF against rotenone-induced cytotoxicity was confirmed by increased cell viability and longer dendritic lengths in PC12 and primary neuronal cells. Furthermore, in rotenone-treated PC12 cells, 1,5-AF upregulated peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) expression and enhanced its deacetylation, while increasing AMP-activated protein kinase (AMPK) phosphorylation. 1,5-AF treatment also increased mitochondrial activity in these cells. Moreover, PGC-1α silencing inhibited the cytoprotective and mitochondrial biogenic effects of 1,5-AF in PC12 cells. Therefore, 1,5-AF may activate PGC-1α through AMPK activation, thus leading to mitochondrial biogenic and cytoprotective effects. Together, our results suggest that 1,5-AF has therapeutic potential for development as a treatment for PD.


Subject(s)
Fructose/analogs & derivatives , Neurons/pathology , Neuroprotective Agents/pharmacology , Organelle Biogenesis , Rotenone/toxicity , Adenylate Kinase/metabolism , Animals , Cell Death/drug effects , Fructose/chemistry , Fructose/pharmacology , Gene Silencing/drug effects , Metformin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , PC12 Cells , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphorylation/drug effects , Rats
19.
Mol Neurobiol ; 58(11): 5602-5617, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34368932

ABSTRACT

Subarachnoid hemorrhage (SAH) is a catastrophic form of stroke responsible for significant morbidity and mortality. Oxidative stress, inflammation, and neuronal apoptosis are important in the pathogenesis of early brain injury (EBI) following SAH. Preconditioning exercise confers neuroprotective effects, mitigating EBI; however, the basis for such protection is unknown. We investigated the effects of preconditioning exercise on brain damage and sensorimotor function after SAH. Male rats were assigned to either a sham-operated (Sham) group, exercise (Ex) group, or no-exercise (No-Ex) group. After a 3-week exercise program, they underwent SAH by endovascular perforation. Consciousness level, neurological score, and sensorimotor function were studied. The expression of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), 4-hydroxynonenal (4HNE), nitrotyrosine (NT), ionized calcium-binding adaptor molecule 1 (Iba1), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 1ß (IL-1ß), 14-3-3γ, p-ß-catenin Ser37, Bax, and caspase-3 were evaluated by immunohistochemistry or western blotting. The terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling (TUNEL) assay was also performed. After SAH, the Ex group had significantly reduced neurological deficits, sensorimotor dysfunction, and consciousness disorder compared with the No-Ex group. Nrf2, HO-1, and 14-3-3γ were significantly higher in the Ex group, while 4HNE, NT, Iba1, TNF-α, IL-6, IL-1ß, Bax, caspase-3, and TUNEL-positive cells were significantly lower. Our findings suggest that preconditioning exercise ameliorates EBI after SAH. The expression of 4HNE and NT was reduced by Nrf2/HO-1 pathway activation; additionally, both oxidative stress and inflammation were reduced. Furthermore, preconditioning exercise reduced apoptosis, likely via the 14-3-3γ/p-ß-catenin Ser37/Bax/caspase-3 pathway.


Subject(s)
Brain Damage, Chronic/prevention & control , Neurons/pathology , Physical Conditioning, Animal , Subarachnoid Hemorrhage/complications , 14-3-3 Proteins/physiology , Animals , Apoptosis , Brain Damage, Chronic/diagnostic imaging , Brain Damage, Chronic/etiology , Brain Damage, Chronic/metabolism , Cytokines/biosynthesis , Cytokines/genetics , Disease Models, Animal , Gene Expression Regulation , Image Processing, Computer-Assisted , In Situ Nick-End Labeling , Male , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/prevention & control , Oxidative Stress , Physical Conditioning, Animal/physiology , Random Allocation , Rats , Rats, Sprague-Dawley , Signal Transduction , Time Factors , X-Ray Microtomography
20.
Brain Struct Funct ; 226(7): 2169-2180, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34114048

ABSTRACT

Preconditioning exercise prior to stroke exerts neuroprotection, which is an endogenous strategy that leads the brain cells to express several intrinsic factors and inhibits their apoptosis. However, it is unclear how long these benefits last after exercise cessation. The aim of this study was to investigate the effects of detraining on preconditioning exercise-induced neuroprotective potential after stroke. Rats were trained using a treadmill for aerobic exercise 5 days each week for 3 weeks, and their neuroprotective effects were examined until 3 weeks after exercise cessation. Stroke was induced by 60 min of left middle cerebral artery occlusion at 3 days, 1, 2, and 3 weeks after exercise cessation. Infarct volume, neurological deficits, sensorimotor function, expression levels of brain-derived neurotrophic factor (BDNF), hypoxia-induced factor-1α (HIF-1α), glial fibrillary acidic protein (GFAP), and P2X7 receptors, and apoptosis activity were examined using immunohistochemical and western blot analyses. Preconditioning exercise significantly reduced infarct volume and ameliorated sensorimotor function after stroke, and its beneficial effects were observed until 2 weeks after exercise cessation. The expression level of BDNF in the ischemic brain was significantly upregulated at 3 days after exercise cessation; however, the expression levels of HIF-1α, GFAP, and P2X7 receptor were significantly increased until 2 weeks after exercise cessation; thereby, significant anti-apoptotic effects were lost at 3 weeks of detraining. Our findings suggest that preconditioning exercise-induced neuroprotective potential may be lost shortly after exercise cessation. Neuroprotection through intrinsic protective factors, such as BDNF and HIF-1α, may provide different neuroprotective mechanisms in a time-dependent manner during detraining.


Subject(s)
Ischemic Stroke , Animals , Brain-Derived Neurotrophic Factor , Disease Models, Animal , Infarction, Middle Cerebral Artery , Neuroprotection , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...