Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Inorg Chem ; 46(2): 437-45, 2007 Jan 22.
Article in English | MEDLINE | ID: mdl-17279822

ABSTRACT

We report the synthesis, crystal structures, thermal, IR, UV-vis, and magnetic properties of a series of divalent transition metal formates, [NH4][M(HCOO)3], where M = divalent Mn, Co, or Ni. They crystallize in the hexagonal chiral space group P6(3)22. The structure consists of octahedral metal centers connected by the anti-anti formate ligands, and the ammonium cations sit in the channels. The chiral structure is a framework with the rarely observed 49.66 topology, and the chirality is derived from the handedness imposed by the formate ligands around the metals and the presence of units with only one handedness. The thermal properties are characterized by a decomposition at ca. 200 degrees C. The three compounds exhibit an antiferromagnetic ground state at 8.4, 9.8, and 29.5 K for Mn, Co, and Ni, respectively. The last two display a weak spontaneous magnetization due to a small canting of the moments below the critical temperature, and the Co compound shows a further transition at lower temperatures. The isothermal magnetizations at 2 K show spin-flop fields of 600 Oe (Mn), 14 kOe (Co), and above 50 kOe (Ni) and a small hysteresis with a remnant magnetization of 25 cm3 G mol(-1) (Co) and 50 cm3 G mol(-1) (Ni) and coercive field of 400 Oe (Co) and 830 Oe (Ni).

3.
Inorg Chem ; 44(5): 1230-7, 2005 Mar 07.
Article in English | MEDLINE | ID: mdl-15732963

ABSTRACT

[Co3(HCOO)6](CH3OH)(H2O) (1), the isostructural analogue of the porous magnet of coordination framework [Mn3(HCOO)6](CH3OH)(H2O), and its desolvated form [Co3(HCOO)6] (2) were prepared and characterized by X-ray and neutron diffraction methods, IR, thermal analyses, and BET, and their magnetic properties were measured. The parent compound, 1, crystallizes in the monoclinic system, space group P21/c, a = 11.254(2) A, b = 9.832(1) A, c = 18.108(3) A, beta = 127.222(2) degrees , V = 1595.5(4) A3, Z = 4, R1 = 0.0329 at 180 K. It possesses a unit cell volume that is 9% smaller than [Mn3(HCOO)6](CH3OH)(H2O) due to the smaller radius of Co2+ ion. Compared with the parent compound 1, the desolvated compound 2 has slightly larger lattice with cell parameters of a = 11.2858(4) A, b = 9.8690(4) A, c = 18.1797(6) A, beta = 127.193(2) degrees , V = 1613.0(1) A3, R1 = 0.0356 at 180 K. The cell parameters of 2, obtained from neutron powder data at 2 K, are a = 11.309(2) A, b = 9.869(1) A, c = 18.201(3) A, beta = 127.244(8) degrees , V = 1617.3(5) A3. The pore volume reduces from 33% to 30% by replacing Mn by Co. The material exhibits a diamond framework based on Co-centered CoCo4 tetrahedral nodes, in which all metal ions have octahedral coordination geometry and all HCOO groups link the metal ions in syn-syn/anti modes. It displays thermal stability up to 270 degrees C. The compound easily loses guest molecules without loss of crystallinity, and it partly reabsorbs water from the atmosphere. Significant N2 sorption was observed for the desolvated framework suggesting that the material possesses permanent porosity. The magnetic properties show a tendency to a 3D long-range magnetic ordering, probably antiferromagnetic with a spin canting arrangement below 2 K.

4.
Dalton Trans ; (15): 2209-16, 2004 Aug 07.
Article in English | MEDLINE | ID: mdl-15278109

ABSTRACT

We present the synthesis, characterization by IR, TGA, single crystal X-ray structure and magnetic properties of a novel series of NaCl-type frameworks of [AmineH(+)][Mn(HCOO)(3)(-)], templated by alkylammonium. The anionic NaCl-framework of [Mn(HCOO)(3)(-)] is counter-balanced by the alkylammonium cations located in the cavities of the framework to which they are hydrogen-bonded. The divalent manganese ions have octahedral geometry and are bridged by the formate in an anti-anti mode of coordination. All the compounds exhibit long-range antiferromagnetism below 9 K with a slight non-collinear arrangement of the moments. The canting, likely due to second-order spin-orbit coupling, is via a Dzyaloshinski-Moriya antisymmetric exchange mechanism. A spin-flop is observed in each case at fairly low fields. An orthorhombic to monoclinic transformation was observed for the protonated cyclotrimethyleneamine that is accompanied by localization of the cations into two positions below 240 K from the rapid dynamic flipping of the ring observed at room temperature.

5.
Inorg Chem ; 42(19): 6114-22, 2003 Sep 22.
Article in English | MEDLINE | ID: mdl-12971784

ABSTRACT

The platelike crystals of a series of novel molecular conductors, which are based on the pi-donor molecules BDT-TTP (2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) with a tetrathiapentalene skeleton and lanthanide nitrate complex anions [Ln(NO3)x](3-x)(Ln = La, Ce, (Pr), Tb, Dy, Ho, Er, Tm, Yb, Lu) with localized 4f magnetic moments, were synthesized. Except for the Ce complex, the salts were composed of (BDT-TTP)(5)[Ln(NO(3))(5)] and were isostructural. Even though the Ce crystal had a different composition, (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)(x)() (x approximately 3), the crystals all had the space group P(-)1. Although the X-ray examination of the Pr salts was insufficient, the existence of two modifications was suggested in these systems by preliminary X-ray examination. Previously, we reported the crystal structures and unique magnetic properties of (BDT-TTP)(5)[Ln(NO(3))(5)] (Ln = Sm, Eu, Nd, Gd). Thus, by combining the results of this work with previous one, we for the first time succeeded in obtaining a complete set of organic conductors composed of the identical pi-donors (BDT-TTP in this case) and all the lanthanide nitrate complex anions (except the complex with Pm(3+)). The crystals were all metallic down to 2 K. Electronic band structure calculations resulted in two-dimensional Fermi surfaces, which was consistent with their stable metallic states. Except for the Lu complex, which lacked paramagnetic moments, the magnetic susceptibilities were measured on the six heavy lanthanide ion complex salts by a SQUID magnetometer (Ln = Tb, Dy, Ho, Er, Tm, Yb). The large paramagnetic susceptibilities, which were caused by the paramagnetic moments of the rare-earth ions, were obtained. The Curie-Weiss law fairly accurately reproduced the temperature dependence of the magnetic susceptibilities of (BDT-TTP)(5)[Ho(NO(3))(5)] in the experimental temperature range (2-300 K) and a comparatively large Weiss temperature (|THETAV;|) was obtained (THETAV;(Ho) = -15 K). A Weiss temperature (THETAV;(Tm) = -8 K) was also obtained for Tm. The |THETAV;| values of other (BDT-TTP)(5)[Ln(NO(3))(5)] salts and (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)x(x approximately 3) were as follows: |THETAV;|/K = 4 (Er), < or =2 (Ce, Tb, Dy, Yb). The comparatively strong intermolecular magnetic interaction between Ho(3+) ions, which was suggested by the |THETAV;| value, is inconsistent with the traditional image of strongly localized 4f orbitals shielded by the electrons in the outer 5s and 5p orbitals. The dipole interactions between Ln(3+) ions causing the Curie-Weiss behavior and the comparatively large THETAV; value of (BDT-TTP)(5)[Ho(NO(3))(5)] is inconsistent with the data, since the complexes exhibit isostructural properties and there is not a clear relationship between the magnitudes of THETAV; values and those of magnetic moments. Therefore, it is possible that the 4f orbitals of Ho atom are sensitive to the ligand field, which will have an effect on the orbital moment of the Ho(3+) ion and/or produce a small amount of mixing between 4f and ligand orbitals to give rise to "real" intermolecular antiferromagnetic interaction through intermolecular overlapping between pi (BDT-TTP) and ligand orbitals of lanthanide nitrate complex anions.

SELECTION OF CITATIONS
SEARCH DETAIL
...