Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 14(8): 1006-13, 2013 May 27.
Article in English | MEDLINE | ID: mdl-23609937

ABSTRACT

The purple photosynthetic bacterium Rhodospirillum centenum has a putative type III polyketide synthase gene (rpsA). Although rpsA was known to be transcribed during the formation of dormant cells, the reaction catalyzed by RpsA was unknown. Thus we examined the RpsA reaction in vitro, using various fatty acyl-CoAs with even numbers of carbons as starter substrates. RpsA produced tetraketide pyranones as major compounds from one C(10-14) fatty acyl-CoA unit, one malonyl-CoA unit and two methylmalonyl-CoA units. We identified these products as 4-hydroxy-3-methyl-6-(1-methyl-2-oxoalkyl)pyran-2-ones by NMR analysis. RpsA is the first bacterial type III PKS that prefers to incorporate two molecules of methylmalonyl-CoA as the extender substrate. In addition, in vitro reactions with (13)C-labeled malonyl-CoA revealed that RpsA produced tetraketide 6-alkyl-4-hydroxy-1,5-dimethyl-2-oxocyclohexa-3,5-diene-1-carboxylic acids from C(14-20) fatty acyl-CoAs. This class of compounds is likely synthesized through aldol condensation induced by methine proton abstraction. No type III polyketide synthase that catalyzes this reaction has been reported so far. These two unusual features of RpsA extend the catalytic functions of the type III polyketide synthase family.


Subject(s)
Acyl Coenzyme A/metabolism , Acyltransferases/metabolism , Pyrans/chemistry , Pyrans/metabolism , Rhodospirillum centenum/enzymology , Acyltransferases/genetics , Genetic Loci , Malonyl Coenzyme A/metabolism , Rhodospirillum centenum/chemistry , Rhodospirillum centenum/genetics , Rhodospirillum centenum/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...