Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(3): 1931-1947, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38197410

ABSTRACT

The ultrafast carrier dynamics of junctions between two chemically identical, but electronically distinct, transition metal dichalcogenides (TMDs) remains largely unknown. Here, we employ time-resolved photoemission electron microscopy (TR-PEEM) to probe the ultrafast carrier dynamics of a monolayer-to-multilayer (1L-ML) WSe2 junction. The TR-PEEM signals recorded for the individual components of the junction reveal the sub-ps carrier cooling dynamics of 1L- and 7L-WSe2, as well as few-ps exciton-exciton annihilation occurring on 1L-WSe2. We observe ultrafast interfacial hole (h) transfer from 1L- to 7L-WSe2 on an ∼0.2 ps time scale. The resultant excess h density in 7L-WSe2 decays by carrier recombination across the junction interface on an ∼100 ps time scale. Reminiscent of the behavior at a depletion region, the TR-PEEM image reveals the h density accumulation on the 7L-WSe2 interface, with a decay length ∼0.60 ± 0.17 µm. These charge transfer and recombination dynamics are in agreement with ab initio quantum dynamics. The computed orbital densities reveal that charge transfer occurs from the basal plane, which extends over both 1L and ML regions, to the upper plane localized on the ML region. This mode of charge transfer is distinctive to chemically homogeneous junctions of layered materials and constitutes an additional carrier deactivation pathway that should be considered in studies of 1L-TMDs found alongside their ML, a common occurrence in exfoliated samples.

2.
Heliyon ; 9(9): e20306, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809411

ABSTRACT

Melamine (Mel) was used as host matrix for liquid nitroglycerin (NG), to prepare Mel/NG solid powdered compounds containing up to 45 wt% of this explosive. The two preparation processes used for this purpose consisted in evaporating a solution of both components, either in ambient conditions or under reduced pressure by the Spray Flash-Evaporation (SFE) process. In Mel/NG materials, amorphous nitroglycerin is distributed in the crystallized melamine matrix as inclusions, which were found to be smaller in size in the material prepared by the SFE process. Mel/NG materials are not stable over time: they gradually lose the nitroglycerin they contain by evaporation.

3.
ACS Nano ; 17(17): 16682-16694, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37581747

ABSTRACT

Strain engineering is an attractive approach for tuning the local optoelectronic properties of transition metal dichalcogenides (TMDs). While strain has been shown to affect the nanosecond carrier recombination dynamics of TMDs, its influence on the sub-picosecond electronic relaxation dynamics is still unexplored. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and nonadiabatic ab initio molecular dynamics (NAMD) to investigate the ultrafast dynamics of wrinkled multilayer (ML) MoS2 comprising 17 layers. Following 2.41 eV photoexcitation, electronic relaxation at the Γ valley occurs with a time constant of 97 ± 2 fs for wrinkled ML-MoS2 and 120 ± 2 fs for flat ML-MoS2. NAMD shows that wrinkling permits larger amplitude motions of MoS2 layers, relaxes electron-phonon coupling selection rules, perturbs chemical bonding, and increases the electronic density of states. As a result, the nonadiabatic coupling grows and electronic relaxation becomes faster compared to flat ML-MoS2. Our study suggests that the sub-picosecond electronic relaxation dynamics of TMDs is amenable to strain engineering and that applications which require long-lived hot carriers, such as hot-electron-driven light harvesting and photocatalysis, should employ wrinkle-free TMDs.

4.
Inorg Chem ; 61(41): 16266-16281, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36197796

ABSTRACT

In this computational study, we report on the stability of cyclic phosphinyl radicals with an aim for a systematical assessment of stabilization effects. The radical stabilization energies (RSEs) were calculated using isodesmic reactions for a large number of carbocyclic radicals possessing different ring sizes and grades of unsaturation. In general, the RSE values range from -1.2 to -14.0 kcal·mol-1, and they show practically no correlation with the spin populations at the P-centers. The RSE values correlate with the reaction Gibbs free energies calculated for the dimerization of the studied simple radicals. Therefore, the more easily accessible RSE values offer a cost-effective estimation of global stability in a straightforward manner. To explore the effect of unsaturation on the RSE values, delocalization energies were determined using appropriate isodesmic reactions. Introducing unsaturations beside the P-center into the backbone of the rings leads to an additive increase in the magnitude of the delocalization energy (∼10, 20, and 30 kcal·mol-1, respectively, for radicals with one, two, and three C═C bonds in the conjugation). Parallelly, the spin populations at the P-centers also dwindle gradually by ∼0.1 e in the same order, indicating that the lone electron delocalizes over the π-system. Radicals containing exocyclic C═C π-bonds were also investigated, and all of these radicals have rather similar stabilities independently of the ring size, outlining the primary importance of the two exocyclic π-bonds in the conjugation. Among the radicals involved in our study, those with the best electronic stabilization are the unsaturated three-, five-, six-, and seven-membered rings containing the maximum number of conjugated vinyl fragments. The largest delocalization energy of 31.5 kcal·mol-1 and the lowest obtained spin population of 0.665 e were found for the fully unsaturated seven-membered radical (phosphepin derivative). Importantly, the electronic stabilization effects alone are insufficient for stabilizing the radicals in monomeric forms epitomized by the exothermic dimerization energies (-40 to -58 kcal·mol-1). Therefore, it is essential to apply sterically demanding bulky substituents on the α-C-atoms. Tweaking the steric congestion enabled us to propose radicals that are expected to be stable against dimerization and, consequently, may be realistic target species for synthetic investigations. The effects contributing to the stability of radicals having sterically encumbered substituents have also been explored.

5.
Faraday Discuss ; 227: 163-170, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33325929

ABSTRACT

III-VI post-transition metal chalcogenides (InSe and GaSe) are a new class of layered semiconductors, which feature a strong variation of size and type of their band gaps as a function of number of layers (N). Here, we investigate exfoliated layers of InSe and GaSe ranging from bulk crystals down to monolayer, encapsulated in hexagonal boron nitride, using Raman spectroscopy. We present the N-dependence of both intralayer vibrations within each atomic layer, as well as of the interlayer shear and layer breathing modes. A linear chain model can be used to describe the evolution of the peak positions as a function of N, consistent with first principles calculations.

6.
ACS Nano ; 15(1): 819-828, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33347267

ABSTRACT

Electron transport across the transition-metal dichalcogenide (TMD)/metal interface plays an important role in determining the performance of TMD-based optoelectronic devices. However, the robustness of this process against structural heterogeneities remains unexplored, to the best of our knowledge. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and atomic force microscopy to investigate the spatially resolved hot-electron-transfer dynamics at the monolayer (1L) MoS2/Au interface. A spatially heterogeneous distribution of 1L-MoS2/Au gap distances, along with the sub-80 nm spatial- and sub-60 fs temporal resolution of TR-PEEM, permits the simultaneous measurement of electron-transfer rates across a range of 1L-MoS2/Au distances. These decay exponentially as a function of distance, with an attenuation coefficient ß âˆ¼ 0.06 ± 0.01 Å-1, comparable to molecular wires. Ab initio simulations suggest that surface plasmon-like states mediate hot-electron-transfer, hence accounting for its weak distance dependence. The weak distance dependence of the interfacial hot-electron-transfer rate indicates that this process is insensitive to distance fluctuations at the TMD/metal interface, thus motivating further exploration of optoelectronic devices based on hot carriers.

7.
ACS Appl Mater Interfaces ; 12(26): 29861-29867, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32506900

ABSTRACT

Graphene-coated polypropylene (PP) textile fibers are presented for their use as temperature sensors. These temperature sensors show a negative thermal coefficient of resistance (TCR) in a range between 30 and 45 °C with good sensitivity and reliability and can operate at voltages as low as 1 V. The analysis of the transient response of the temperature on resistance of different types of graphene produced by chemical vapor deposition (CVD) and shear exfoliation of graphite (SEG) shows that trilayer graphene (TLG) grown on copper by CVD displays better sensitivity due to the better thickness uniformity of the film and that carbon paste provides good contact for the measurements. Along with high sensitivity, TLG on PP shows not only the best response but also better transparency, mechanical stability, and washability compared to SEG. Temperature-dependent Raman analysis reveals that the temperature has no significant effect on the peak frequency of PP and expected effect on graphene in the demonstrated temperature range. The presented results demonstrate that these flexible, lightweight temperature sensors based on TLG with a negative TCR can be easily integrated in fabrics.

8.
Nanoscale ; 11(41): 19301-19314, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31626253

ABSTRACT

We investigate the photocatalytic performance of composites prepared in a one-step process by liquid-phase exfoliation of graphite in the presence of TiO2 nanoparticles (NPs) at atmospheric pressure and in water, without heating or adding any surfactant, and starting from low-cost commercial reagents. These show enhanced photocatalytic activity, degrading up to 40% more pollutants with respect to the starting TiO2-NPs, in the case of a model dye target, and up to 70% more pollutants in the case of nitrogen oxides. In order to understand the photo-physical mechanisms underlying this enhancement, we investigate the photo-generation of reactive species (trapped holes and electrons) by ultrafast transient absorption spectroscopy. We observe an electron transfer process from TiO2 to the graphite flakes within the first picoseconds of the relaxation dynamics, which causes the decrease of the charge recombination rate, and increases the efficiency of the reactive species photo-production.

9.
ACS Nano ; 13(8): 8926-8935, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31322332

ABSTRACT

We report high room-temperature mobility in single-layer graphene grown by chemical vapor deposition (CVD) after wet transfer on SiO2 and hexagonal boron nitride (hBN) encapsulation. By removing contaminations, trapped at the interfaces between single-crystal graphene and hBN, we achieve mobilities up to ∼70000 cm2 V-1 s-1 at room temperature and ∼120 000 cm2 V-1 s-1 at 9K. These are more than twice those of previous wet-transferred graphene and comparable to samples prepared by dry transfer. We also investigate the combined approach of thermal annealing and encapsulation in polycrystalline graphene, achieving room-temperature mobilities of ∼30 000 cm2 V-1 s-1. These results show that, with appropriate encapsulation and cleaning, room-temperature mobilities well above 10 000 cm2 V-1 s-1 can be obtained in samples grown by CVD and transferred using a conventional, easily scalable PMMA-based wet approach.

10.
Nat Nanotechnol ; 13(7): 583-588, 2018 07.
Article in English | MEDLINE | ID: mdl-29784965

ABSTRACT

Optical harmonic generation occurs when high intensity light (>1010 W m-2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light-matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.

11.
Nat Commun ; 8: 15093, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28530249

ABSTRACT

Quantum light emitters have been observed in atomically thin layers of transition metal dichalcogenides. However, they are found at random locations within the host material and usually in low densities, hindering experiments aiming to investigate this new class of emitters. Here, we create deterministic arrays of hundreds of quantum emitters in tungsten diselenide and tungsten disulphide monolayers, emitting across a range of wavelengths in the visible spectrum (610-680 nm and 740-820 nm), with a greater spectral stability than their randomly occurring counterparts. This is achieved by depositing monolayers onto silica substrates nanopatterned with arrays of 150-nm-diameter pillars ranging from 60 to 190 nm in height. The nanopillars create localized deformations in the material resulting in the quantum confinement of excitons. Our method may enable the placement of emitters in photonic structures such as optical waveguides in a scalable way, where precise and accurate positioning is paramount.

12.
Nat Commun ; 7: 12978, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27667022

ABSTRACT

Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

13.
ACS Nano ; 8(7): 7432-41, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24960180

ABSTRACT

We investigate the evolution of the Raman spectrum of defected graphene as a function of doping. Polymer electrolyte gating allows us to move the Fermi level up to 0.7 eV, as directly monitored by in situ Hall-effect measurements. For a given number of defects, we find that the intensities of the D and D' peaks decrease with increasing doping. We assign this to an increased total scattering rate of the photoexcited electrons and holes, due to the doping-dependent strength of electron-electron scattering. We present a general relation between D peak intensity and defects valid for any doping level.

14.
Lymphat Res Biol ; 11(2): 101-3, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23772719

ABSTRACT

BACKGROUND: The head and neck region is the most common site for lymphatic malformations. The aim of the present study was to analyze the exact localizations of lymphatic malformations of the neck. METHODS AND RESULTS: The patients' charts of 48 patients with lymphatic malformations of the neck were retrospectively analyzed regarding gender, age at diagnosis, age at initial presentation, morphologic type, size, and localization. The median age of the patients at presentation was 11.9 years. Macrocystic malformations were observed in 13 patients (27%), mainly in the lateral neck. Microcystic lesions occurred in 22 patients (46%), predominantly in the floor of mouth. Mixed lymphatic malformations occurred in 13 patients (27%) without a preferred localization. The morbidity of patients with microcystic and mixed lesions was higher than of patients with macrocystic lymphatic malformations. CONCLUSION: The cause for the different localization of microcystic and macrocystic lymphatic malformations is still not clarified. One reason may is the different structure of the surrounding connective tissue, which is compact in the floor of mouth and loose in the neck lateral neck so that macrocystic cysts can arise. Maybe both types of malformation have a different etiology. However, this will have to be clarified in further studies.


Subject(s)
Lymphatic Abnormalities , Neck , Child , Cysts , Female , Humans , Infant , Infant, Newborn , Male
15.
Nano Lett ; 12(2): 617-21, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22149458

ABSTRACT

We use graphene bubbles to study the Raman spectrum of graphene under biaxial (e.g., isotropic) strain. Our Gruneisen parameters are in excellent agreement with the theoretical values. Discrepancy in the previously reported values is attributed to the interaction of graphene with the substrate. Bilayer balloons (intentionally pressurized membranes) have been used to avoid the effect of the substrate and to study the dependence of strain on the interlayer interactions.


Subject(s)
Graphite/chemistry , Membranes, Artificial , Spectrum Analysis, Raman , Surface Properties
16.
Chemistry ; 17(32): 8858-69, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21732442

ABSTRACT

The homogeneous dinuclear zinc catalyst going back to the work of Williams et al. is to date the most active catalyst for the copolymerisation of cyclohexene oxide and CO(2) at one atmosphere of carbon dioxide. However, this catalyst shows no copolymer formation in the copolymerisation reaction of propylene oxide and carbon dioxide, instead only cyclic carbonate is found. This behaviour is known for many zinc-based catalysts, although the reasons are still unidentified. Within our studies, we focus on the parameters that are responsible for this typical behaviour. A deactivation of the catalyst due to a reaction with propylene oxide turns out to be negligible. Furthermore, the catalyst still shows poly(cyclohexene carbonate) formation in the presence of cyclic propylene carbonate, but the catalyst activity is dramatically reduced. In terpolymerisation reactions of CO(2) with different ratios of cyclohexene oxide to propylene oxide, no incorporation of propylene oxide can be detected, which can only be explained by a very fast back-biting reaction. Kinetic investigations indicate a complex reaction network, which can be manifested by theoretical investigations. DFT calculations show that the ring strains of both epoxides are comparable and the kinetic barriers for the chain propagation even favour the poly(propylene carbonate) over the poly(cyclohexene carbonate) formation. Therefore, the crucial step in the copolymerisation of propylene oxide and carbon dioxide is the back-biting reaction in the case of the studied zinc catalyst. The depolymerisation is several orders of magnitude faster for poly(propylene carbonate) than for poly(cyclohexene carbonate).

17.
J Am Chem Soc ; 133(33): 13151-61, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21744837

ABSTRACT

Copolymerization of epoxides and CO(2) with heterogeneous zinc dicarboxylates is prominent since the early days of this area of chemistry. However, in over 30 years of research, the efficiency of this catalyst system could not be improved significantly. Furthermore, a huge activity difference between zinc glutarate and its lower homologue zinc succinate exists, which could not be explained so far. A detailed investigation of the underlying copolymerization mechanisms on heterogeneous catalysts is therefore necessary. Such investigations are so far lacking, which renders logical improvements of the catalysts difficult. We therefore decided to conduct a detailed investigation on the different zinc-dicarboxylic catalysts, their copolymerization efficiency, solid state structure and supplemented the results with theoretical calculations. The results imply that the widely discussed bimetallic mechanism (for homogeneous catalysts) is in place for heterogeneous zinc dicarboxylates as well. Theoretical calculations conducted to identify an "ideal" Zn-Zn distance suggest an optimal separation of Zn atoms in the range of 4.3-5.0 Å. The combined copolymerization experiments and calculated models give a consistent explanation for the difference in activity of the different zinc-dicarboxylate catalysts and give a hint why the activity of the heterogeneous zinc-dicarboxylate system is limited.

18.
Chemistry ; 15(23): 5845-53, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19396885

ABSTRACT

(Triptycenedicarboxylato)zinc metal-organic frameworks (MOFs) based on paddle wheel secondary building units (SBUs) with different axial ligands have been prepared. The reproducible formation of the layered paddle-wheel structures from triptycenedicarboxylic acid (H(2)TDC) and zinc nitrate under various conditions seems to be characteristic of this acid and is utilized for the construction of 3D frameworks by a pillaring approach. We attempted to bring additional functionalities into MOFs by employing the appropriate pillaring ligands, for example, bis(4-pyridyl)-s-tetrazine and bis(4-pyridyl)-dimethoxy-p-phenylenedivinylene, and investigated certain properties of some MOF materials, such as guest-exchange behavior, luminescence, microporosity, and stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...