Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Med Internet Res ; 26: e42904, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477981

ABSTRACT

BACKGROUND: While characteristic facial features provide important clues for finding the correct diagnosis in genetic syndromes, valid assessment can be challenging. The next-generation phenotyping algorithm DeepGestalt analyzes patient images and provides syndrome suggestions. GestaltMatcher matches patient images with similar facial features. The new D-Score provides a score for the degree of facial dysmorphism. OBJECTIVE: We aimed to test state-of-the-art facial phenotyping tools by benchmarking GestaltMatcher and D-Score and comparing them to DeepGestalt. METHODS: Using a retrospective sample of 4796 images of patients with 486 different genetic syndromes (London Medical Database, GestaltMatcher Database, and literature images) and 323 inconspicuous control images, we determined the clinical use of D-Score, GestaltMatcher, and DeepGestalt, evaluating sensitivity; specificity; accuracy; the number of supported diagnoses; and potential biases such as age, sex, and ethnicity. RESULTS: DeepGestalt suggested 340 distinct syndromes and GestaltMatcher suggested 1128 syndromes. The top-30 sensitivity was higher for DeepGestalt (88%, SD 18%) than for GestaltMatcher (76%, SD 26%). DeepGestalt generally assigned lower scores but provided higher scores for patient images than for inconspicuous control images, thus allowing the 2 cohorts to be separated with an area under the receiver operating characteristic curve (AUROC) of 0.73. GestaltMatcher could not separate the 2 classes (AUROC 0.55). Trained for this purpose, D-Score achieved the highest discriminatory power (AUROC 0.86). D-Score's levels increased with the age of the depicted individuals. Male individuals yielded higher D-scores than female individuals. Ethnicity did not appear to influence D-scores. CONCLUSIONS: If used with caution, algorithms such as D-score could help clinicians with constrained resources or limited experience in syndromology to decide whether a patient needs further genetic evaluation. Algorithms such as DeepGestalt could support diagnosing rather common genetic syndromes with facial abnormalities, whereas algorithms such as GestaltMatcher could suggest rare diagnoses that are unknown to the clinician in patients with a characteristic, dysmorphic face.


Subject(s)
Algorithms , Benchmarking , Humans , Female , Male , Retrospective Studies , Area Under Curve , Computers
2.
Genet Med ; 25(11): 100928, 2023 11.
Article in English | MEDLINE | ID: mdl-37427568

ABSTRACT

PURPOSE: HOXD13 is an important regulator of limb development. Pathogenic variants in HOXD13 cause synpolydactyly type 1 (SPD1). How different types and positions of HOXD13 variants contribute to genotype-phenotype correlations, penetrance, and expressivity of SPD1 remains elusive. Here, we present a novel cohort and a literature review to elucidate HOXD13 phenotype-genotype correlations. METHODS: Patients with limb anomalies suggestive of SPD1 were selected for analysis of HOXD13 by Sanger sequencing, repeat length analysis, and next-generation sequencing. Literature was reviewed for HOXD13 heterozygotes. Variants were annotated for phenotypic data. Severity was calculated, and cluster and decision-tree analyses were performed. RESULTS: We identified 98 affected members of 38 families featuring 11 different (likely) causative variants and 4 variants of uncertain significance. The most frequent (25/38) were alanine repeat expansions. Phenotypes ranged from unaffected heterozygotes to severe osseous synpolydactyly, with intra- and inter-familial heterogeneity and asymmetry. A literature review provided 160 evaluable affected members of 49 families with SPD1. Computer-aided analysis only corroborated a positive correlation between alanine repeat length and phenotype severity. CONCLUSION: Our findings support that HOXD13-protein condensation in addition to haploinsufficiency is the molecular pathomechanism of SPD1. Our data may, also, facilitate the interpretation of synpolydactyly radiographs by future automated tools.


Subject(s)
Homeodomain Proteins , Syndactyly , Humans , Homeodomain Proteins/genetics , Transcription Factors/genetics , Syndactyly/genetics , Genotype , Phenotype , Pedigree , Alanine/genetics , Mutation
3.
Cancers (Basel) ; 14(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35884425

ABSTRACT

Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.

5.
Arch Gynecol Obstet ; 303(4): 943-953, 2021 04.
Article in English | MEDLINE | ID: mdl-33090266

ABSTRACT

PURPOSE: Fetal arthrogryposis multiplex congenita (AMC) describes a heterogeneous disease entity characterized by multiple contractures affecting at least two different body areas. The aim of our study was to identify additional sonographic abnormalities in fetuses with AMC Type I-III associated with an unfavorable prognosis and to describe when those signs were first detected. METHODS: This retrospective study included 41 pregnancies of suspected AMC diagnosed 1999-2017 at our tertiary referral center. The affected pregnancies were divided into the 3 AMC subgroups; the time of detection and outcome were analyzed. Prenatal sonograms, pediatric charts, genetic tests, and autopsy reports were studied. RESULTS: Pregnancy outcome data were verifiable in 34 out of 41 cases; in 27 cases, AMC was confirmed. Hydrops was present in 50% of postnatally deceased fetuses, 53% of cases resulting in termination of pregnancy vs. 0% of the surviving 8 children. Absent stomach filling was found in 67% of the children with neonatal death. After subcategorization, the limb-involvement-only-group, 8% showed hydrops vs. 100% in system anomaly group vs. 70% in neuromuscular dysfunction cohort (p = 0.001). Scoliosis, nuchal edema, and absent stomach filling were significantly indicating for a neurological etiology. CONCLUSION: In addition to disease-defining sonographic findings, those with prognostic significance were identified. Hydrops, nuchal edema, scoliosis and absent stomach filling were associated with unfavorable outcomes implicating a neuromuscular etiology. This knowledge can help to predict the further course of the disease and support patient counseling.


Subject(s)
Arthrogryposis/diagnostic imaging , Ultrasonography, Prenatal , Abnormalities, Multiple/diagnostic imaging , Adult , Female , Genetic Testing , Germany , Gestational Age , Humans , Male , Pregnancy , Pregnancy Outcome , Prognosis , Retrospective Studies , Young Adult
6.
J Med Internet Res ; 22(10): e19263, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33090109

ABSTRACT

BACKGROUND: Collectively, an estimated 5% of the population have a genetic disease. Many of them feature characteristics that can be detected by facial phenotyping. Face2Gene CLINIC is an online app for facial phenotyping of patients with genetic syndromes. DeepGestalt, the neural network driving Face2Gene, automatically prioritizes syndrome suggestions based on ordinary patient photographs, potentially improving the diagnostic process. Hitherto, studies on DeepGestalt's quality highlighted its sensitivity in syndromic patients. However, determining the accuracy of a diagnostic methodology also requires testing of negative controls. OBJECTIVE: The aim of this study was to evaluate DeepGestalt's accuracy with photos of individuals with and without a genetic syndrome. Moreover, we aimed to propose a machine learning-based framework for the automated differentiation of DeepGestalt's output on such images. METHODS: Frontal facial images of individuals with a diagnosis of a genetic syndrome (established clinically or molecularly) from a convenience sample were reanalyzed. Each photo was matched by age, sex, and ethnicity to a picture featuring an individual without a genetic syndrome. Absence of a facial gestalt suggestive of a genetic syndrome was determined by physicians working in medical genetics. Photos were selected from online reports or were taken by us for the purpose of this study. Facial phenotype was analyzed by DeepGestalt version 19.1.7, accessed via Face2Gene CLINIC. Furthermore, we designed linear support vector machines (SVMs) using Python 3.7 to automatically differentiate between the 2 classes of photographs based on DeepGestalt's result lists. RESULTS: We included photos of 323 patients diagnosed with 17 different genetic syndromes and matched those with an equal number of facial images without a genetic syndrome, analyzing a total of 646 pictures. We confirm DeepGestalt's high sensitivity (top 10 sensitivity: 295/323, 91%). DeepGestalt's syndrome suggestions in individuals without a craniofacially dysmorphic syndrome followed a nonrandom distribution. A total of 17 syndromes appeared in the top 30 suggestions of more than 50% of nondysmorphic images. DeepGestalt's top scores differed between the syndromic and control images (area under the receiver operating characteristic [AUROC] curve 0.72, 95% CI 0.68-0.76; P<.001). A linear SVM running on DeepGestalt's result vectors showed stronger differences (AUROC 0.89, 95% CI 0.87-0.92; P<.001). CONCLUSIONS: DeepGestalt fairly separates images of individuals with and without a genetic syndrome. This separation can be significantly improved by SVMs running on top of DeepGestalt, thus supporting the diagnostic process of patients with a genetic syndrome. Our findings facilitate the critical interpretation of DeepGestalt's results and may help enhance it and similar computer-aided facial phenotyping tools.


Subject(s)
Computers/standards , Craniofacial Abnormalities/diagnostic imaging , Face/diagnostic imaging , Female , Humans , Male , Phenotype
7.
J Cardiovasc Electrophysiol ; 31(6): 1527-1535, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32173957

ABSTRACT

INTRODUCTION: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by adrenergically stimulated ventricular tachycardia. The most common form of CPVT is due to autosomal dominant variants in the cardiac ryanodine-receptor gene (RYR2). However, trans-2,3-enoyl-CoA reductase-like (TECRL) was recently suggested to be a novel candidate gene for life-threatening inherited arrhythmias. Patients previously reported with pathogenic changes in TECRL showed a special mixed phenotype of CPVT and long-QT-syndrome (LQTS) termed CPVT type 3 (CPVT3), an autosomal recessive disorder. METHODS AND RESULTS: We implemented TECRL into our NGS panel diagnostics for CPVT and LQTS in April 2017. By December 2018, 631 index patients with suspected CPVT or LQTS had been referred to our laboratory for genetic testing. Molecular analysis identified four Caucasian families carrying novel variants in TECRL. One patient was homozygous for Gln139* resulting in a premature stop codon and loss-of-function of the TECRL protein. Another patient was homozygous for Pro290His, probably leading to an altered folding of the 3-oxo-5-alpha steroid 4-dehydrogenase domain of the TECRL protein. The LOF-variant Ser309* and the missense-variant Val298Ala have been shown to be compound heterozygous in another individual. NGS-based copy number variation analysis and quantitative PCR revealed a quadruplication of TECRL in the last individual, which is likely to be a homozygous duplication. CONCLUSION: The data from our patient collective indicate that CPVT3 occurs much more frequently than previously expected. Variants in TECRL may be causative in up to 5% of all CPVT cases. According to these findings, the default analysis of this gene is recommended if CPVT is suspected.


Subject(s)
Codon, Nonsense , DNA Copy Number Variations , Gene Amplification , Loss of Function Mutation , Oxidoreductases/genetics , Tachycardia, Ventricular/genetics , Action Potentials , Adolescent , Child , Female , Genetic Predisposition to Disease , Heart Conduction System/physiopathology , Heart Rate , Heredity , Heterozygote , Homozygote , Humans , Male , Middle Aged , Oxidoreductases/metabolism , Pedigree , Phenotype , Protein Folding , Risk Assessment , Risk Factors , Severity of Illness Index , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/enzymology , Tachycardia, Ventricular/physiopathology
8.
Sci Rep ; 9(1): 11995, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427613

ABSTRACT

Familial hypercholesterolemia (FH) is characterised by elevated serum levels of low-density lipoprotein cholesterol (LDL-C) and a substantial risk for cardiovascular disease. The autosomal-dominant FH is mostly caused by mutations in LDLR (low density lipoprotein receptor), APOB (apolipoprotein B), and PCSK9 (proprotein convertase subtilisin/kexin). Recently, STAP1 has been suggested as a fourth causative gene. We analyzed STAP1 in 75 hypercholesterolemic patients from Berlin, Germany, who are negative for mutations in canonical FH genes. In 10 patients with negative family history, we additionally screened for disease causing variants in LDLRAP1 (low density lipoprotein receptor adaptor protein 1), associated with autosomal-recessive hypercholesterolemia. We identified one STAP1 variant predicted to be disease causing. To evaluate association of serum lipid levels and STAP1 carrier status, we analyzed 20 individuals from a population based cohort, the Cooperative Health Research in South Tyrol (CHRIS) study, carrying rare STAP1 variants. Out of the same cohort we randomly selected 100 non-carriers as control. In the Berlin FH cohort STAP1 variants were rare. In the CHRIS cohort, we obtained no statistically significant differences between carriers and non-carriers of STAP1 variants with respect to lipid traits. Until such an association has been verified in more individuals with genetic variants in STAP1, we cannot estimate whether STAP1 generally is a causative gene for FH.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/etiology , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers , Female , Genetic Association Studies/methods , Humans , Lipid Metabolism , Lipids/blood , Male , Middle Aged , Mutation , Phenotype , Sequence Analysis, DNA
9.
JBMR Plus ; 2(3): 174-186, 2018 May.
Article in English | MEDLINE | ID: mdl-30283901

ABSTRACT

Successful fracture healing requires a tight interplay between mechanical and biological cues. In vitro studies illustrated that mechanical loading modulates bone morphogenetic protein (BMP) signaling. However, in the early phases of large bone defect regeneration in vivo, the underlying mechanisms leading to this mechanosensation remained unknown. We investigated the interaction of BMP2 stimulation and mechanical boundary conditions in a rat critical-sized femoral defect model (5 mm) stabilized with three distinctly different external fixator stiffness. Defects were treated with 5 µg rhBMP2 loaded on an absorbable collagen sponge. Early matrix alignment was monitored by second-harmonic generation imaging. Bony bridging of defects and successive healing was monitored by histology at day 7 and day 14 as well as in vivo microCT at days 10, 21, and 42 post-operation. Femora harvested at day 42 were characterized mechanically assessing torsional load to failure ex vivo. At tissue level, differences between groups were visible at day 14 with manifest bone formation in the microCT. Histologically, we observed prolonged chondrogenesis upon flexible fixation, whereas osteogenesis started earlier after rigid and semirigid fixation. At later time points, there was a boost of bone tissue formation upon flexible fixation, whereas other groups already displayed signs of tissue maturation. Based on gene expression profiling, we analyzed the mechanobiological interplay. Already at day 3, these analyses revealed differences in expression pattern, specifically of genes involved in extracellular matrix formation. Gene regulation correlating with fixator stiffness was pronounced at day 7 comprising genes related to immunological processes and cellular contraction. The influence of loading on matrix contraction was further investigated and confirmed in a 3D bioreactor. Taken together, we demonstrate an early onset of mechanical conditions influencing BMP2-induced defect healing and shed light on gene regulatory networks associated with extracellular matrix organization and contraction that seemed to directly impact healing outcomes. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

10.
Am J Med Genet A ; 176(9): 2028-2033, 2018 09.
Article in English | MEDLINE | ID: mdl-30194892

ABSTRACT

Cadherins are cell-adhesion molecules that control morphogenesis, cell migration, and cell shape changes during multiple developmental processes. Until now four distinct cadherins have been implicated in human Mendelian disorders, mainly featuring skin, retinal and hearing manifestations. Branchio-skeleto-genital (or Elsahy-Waters) syndrome (BSGS) is an ultra-rare condition featuring a characteristic face, premature loss of teeth, vertebral and genital anomalies, and intellectual disability. We have studied two sibs with BSGS originally described by Castori et al. in 2010. Exome sequencing led to the identification of a novel homozygous nonsense variant in the first exon of the cadherin-11 gene (CDH11), which results in a prematurely truncated form of the protein. Recessive variants in CDH11 have been recently demonstrated in two other sporadic patients and a pair of sisters affected by BSGS. Although the function of this cadherin (also termed Osteoblast-Cadherin) is not completely understood, its prevalent expression in osteoblastic cell lines and up-regulation during differentiation suggest a specific function in bone formation and development. This study identifies a novel loss-of-function variant in CDH11 as a cause of BSGS and supports the role of cadherin-11 as a key player in axial and craniofacial malformations.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Cadherins/genetics , Genetic Association Studies , Mutation , Phenotype , Alleles , Child , DNA Mutational Analysis , Genetic Testing , Genotype , Humans , Loss of Function Mutation , Male , Pedigree , Syndrome , Exome Sequencing
11.
Bone ; 113: 29-40, 2018 08.
Article in English | MEDLINE | ID: mdl-29653293

ABSTRACT

Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology.


Subject(s)
Cell Differentiation/genetics , Osteoblasts/physiology , Osteogenesis/genetics , Transcriptome/genetics , Alternative Splicing , Animals , Cells, Cultured , Gene Expression Profiling , Mice , Mice, Inbred C57BL , RNA/analysis , Skull/physiology
12.
PLoS Genet ; 14(3): e1007242, 2018 03.
Article in English | MEDLINE | ID: mdl-29561836

ABSTRACT

Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-ß in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment.


Subject(s)
Bone Diseases/congenital , Dwarfism/metabolism , Osteoblasts/pathology , Proteoglycans/metabolism , Skin Diseases, Genetic/metabolism , Transforming Growth Factor beta/metabolism , Vesicular Transport Proteins/metabolism , Animals , Bone Diseases/metabolism , Bone Diseases/pathology , Cell Differentiation , Decorin/metabolism , Dermatan Sulfate/metabolism , Disease Models, Animal , Dwarfism/pathology , Female , Fractures, Bone/genetics , Glycosylation , Golgi Matrix Proteins , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/physiology , Mice, Inbred C57BL , Mice, Transgenic , Osteoblasts/metabolism , Signal Transduction , Skin Diseases, Genetic/pathology , Vesicular Transport Proteins/genetics
13.
Sci Rep ; 7(1): 17192, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222456

ABSTRACT

Insulin-resistance is the main cause of type 2 diabetes. Here we describe the identification and characterization of BMP2 and BMP6 as new insulin-sensitizing growth factors in mature adipocytes. We show that BMP2 and BMP6 lead to enhanced insulin-mediated glucose uptake in both insulin-sensitive and -insensitive adipocytes. We exclude a direct effect of BMP2 or BMP6 on translocation of GLUT4 to the plasma membrane and demonstrate that these BMPs increase GLUT4 protein levels equipotent to Rosiglitazone. BMPs induce expression of PPARγ as the crucial mediator for the insulin-sensitizing effect. A comprehensive RNA-Seq analysis in mature adipocytes revealed regulation of both BMP/Smad and PPARγ target genes. The effects of BMP2 and BMP6 are not completely redundant and include regulation of genes involved in glucose and fatty acid metabolism and adipokine expression. Collectively, these findings suggest the BMP2 and BMP6 pathway(s) as promising new drug targets to treat insulin resistance.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Insulin Resistance , PPAR gamma/metabolism , Up-Regulation/drug effects , 3T3-L1 Cells , Animals , Biological Transport/drug effects , Humans , MAP Kinase Signaling System/drug effects , Mice , Signal Transduction/drug effects
14.
J Hum Genet ; 60(8): 419-25, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25994865

ABSTRACT

We report on a Brachydactyly Type C (BDC) patient with clinically inconspicuous parents. Molecular genetic analyses revealed compound heterozygosity for two GDF5 variants. The variant c.956G>T (p.Gly319Val) was inherited from her mother and has been reported in exome sequencing projects, whereas c.1073T>C (p.Ile358Thr) has never been reported so far. In silico, both variants were predicted to be 'disease-causing', but the fact that p.Ile358Thr was predicted by SIFT to be 'tolerated' raised our suspicion. Therefore, we performed in vitro assays. To our surprise, GDF5(G319V) showed pronounced loss of function in luciferase reporter assays and in vitro chondrogenesis, whereas GDF5(I358T) and GDF5(WT) had comparable biological activities. Western blot analyses revealed decreased protein levels after overexpression of GDF5(G319V). In absence of linkage or de novo mutation, several scenarios could explain the underlying mechanism of the patient's phenotype. Owing to reduced activity of GDF5(G319V) in our functional assays, p.Gly319Val might be causative for BDC, but typically evoke an unrecognizably mild phenotype or even nonpenetrance. Another possibility is that our assays failed to pinpoint the disease-causing mechanism of the p.Ile358Thr allele. A final possibility is that compound heterozygosity for p.Ile358Thr and p.Gly319Val is more deleterious to GDF5 activity than either variant alone. Until all possible explanations can be rigorously tested experimentally, a precise recurrence risk counseling for the parents and the affected child is not possible.


Subject(s)
Amino Acid Substitution , Brachydactyly/genetics , Growth Differentiation Factor 5/genetics , Amino Acid Sequence , Child, Preschool , Female , Glycine/genetics , Heterozygote , Humans , Isoleucine/genetics , Molecular Sequence Data , Mutation, Missense , Pedigree , Promoter Regions, Genetic/genetics , Threonine/genetics , Valine/genetics
15.
PLoS One ; 10(3): e0119030, 2015.
Article in English | MEDLINE | ID: mdl-25775093

ABSTRACT

BACKGROUND: Neurofibromatosis type I (NF1, MIM#162200) is a relatively frequent genetic condition, which predisposes to tumor formation. Apart from tumors, individuals with NF1 often exhibit endocrine abnormalities such as precocious puberty (2,5-5% of NF1 patients) and some cases of hypertension (16% of NF1 patients). Several cases of adrenal cortex adenomas have been described in NF1 individuals supporting the notion that neurofibromin might play a role in adrenal cortex homeostasis. However, no experimental data were available to prove this hypothesis. MATERIALS AND METHODS: We analysed Nf1Prx1 mice and one case of adrenal cortical hyperplasia in a NF1patient. RESULTS: In Nf1Prx1 mice Nf1 is inactivated in the developing limbs, head mesenchyme as well as in the adrenal gland cortex, but not the adrenal medulla or brain. We show that adrenal gland size is increased in NF1Prx1 mice. Nf1Prx1 female mice showed corticosterone and aldosterone overproduction. Molecular analysis of Nf1 deficient adrenals revealed deregulation of multiple proteins, including steroidogenic acute regulatory protein (StAR), a vital mitochondrial factor promoting transfer of cholesterol into steroid making mitochondria. This was associated with a marked upregulation of MAPK pathway and a female specific increase of cAMP concentration in murine adrenal lysates. Complementarily, we characterized a patient with neurofibromatosis type I with macronodular adrenal hyperplasia with ACTH-independent cortisol overproduction. Comparison of normal control tissue- and adrenal hyperplasia- derived genomic DNA revealed loss of heterozygosity (LOH) of the wild type NF1 allele, showing that biallelic NF1 gene inactivation occurred in the hyperplastic adrenal gland. CONCLUSIONS: Our data suggest that biallelic loss of Nf1 induces autonomous adrenal hyper-activity. We conclude that Nf1 is involved in the regulation of adrenal cortex function in mice and humans.


Subject(s)
Adrenal Cortex/pathology , Adrenal Hyperplasia, Congenital/genetics , Homeodomain Proteins/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Adolescent , Adrenal Cortex/metabolism , Adrenal Hyperplasia, Congenital/metabolism , Adrenal Hyperplasia, Congenital/pathology , Adrenocorticotropic Hormone/metabolism , Animals , Child , Child, Preschool , Female , Humans , Loss of Heterozygosity , Mice , Neurofibromatosis 1/metabolism , Neurofibromin 1/metabolism
16.
J Bone Miner Res ; 30(5): 796-808, 2015 May.
Article in English | MEDLINE | ID: mdl-25407900

ABSTRACT

MicroRNAs play important roles during cell reprogramming and differentiation. In this study, we identified the miR-497∼195 cluster, a member of the miR-15 family, as strongly upregulated with age of postnatal bone development in vivo and late differentiation stages of primary osteoblasts cultured in vitro. Early expression of miR-195-5p inhibits differentiation and mineralization. Microarray analyses along with quantitative PCR demonstrate that miR-195-5p alters the gene regulatory network of osteoblast differentiation and impairs the induction of bone morphogenetic protein (BMP) responsive genes. Applying reporter gene and Western blot assays, we show that miR-195-5p interferes with the BMP/Smad-pathway in a dose-dependent manner. Systematically comparing the changes in mRNA levels in response to miR-195-5p overexpression with the changes observed in the natural course of osteoblast differentiation, we demonstrate that microRNAs of the miR-15 family affect several target genes involved in BMP signaling. Predicted targets including Furin, a protease that cleaves pro-forms, genes encoding receptors such as Acvr2a, Bmp1a, Dies1, and Tgfbr3, molecules within the cascade like Smad5, transcriptional regulators like Ski and Zfp423 as well as Mapk3 and Smurf1 were validated by quantitative PCR. Taken together, our data strongly suggest that miR-497∼195 cluster microRNAs act as intracellular antagonists of BMP signaling in bone cells.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cell Differentiation/genetics , MicroRNAs/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Signal Transduction/genetics , Aging/genetics , Animals , Animals, Newborn , Bone Morphogenetic Protein 2/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Computational Biology , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Gene Expression Regulation/drug effects , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , NIH 3T3 Cells , Oligonucleotide Array Sequence Analysis , Recombinant Proteins/pharmacology , Reproducibility of Results , Signal Transduction/drug effects , Transforming Growth Factor beta/pharmacology
17.
Bone ; 73: 111-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25543012

ABSTRACT

Multiple synostoses syndrome 2 (SYNS2) is a rare genetic disease characterized by multiple fusions of the joints of the extremities, like phalangeal joints, carpal and tarsal joints or the knee and elbows. SYNS2 is caused by point mutations in the Growth and Differentiation Factor 5 (GDF5), which plays an essential role during skeletal development and regeneration. We selected one of the SYNS2-causing GDF5 mutations, p.N445T, which is known to destabilize the interaction with the Bone Morphogenetic Protein (BMP) antagonist NOGGIN (NOG), in order to generate the superagonistic GDF5 variant GDF5(N445T). In this study, we tested its capacity to support regeneration in a rat critical-sized defect model in vivo. MicroCT and histological analyses indicate that GDF5(N445T)-treated defects show faster and more efficient healing compared to GDF5 wild type (GDF5(wt))-treated defects. Microarray-based gene expression and quantitative PCR analyses from callus tissue point to a specific acceleration of the early phases of bone healing, comprising the inflammation and chondrogenesis phase. These results support the concept that disease-deduced growth factor variants are promising lead structures for novel therapeutics with improved clinical activities.


Subject(s)
Growth Differentiation Factor 5/physiology , Synostosis/physiopathology , Wound Healing , Animals , Female , Growth Differentiation Factor 5/genetics , Humans , Point Mutation , Rats , Rats, Sprague-Dawley , Synostosis/genetics , Transcription, Genetic
18.
Genome Biol ; 15(9): 423, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25315429

ABSTRACT

BACKGROUND: Recent data from genome-wide chromosome conformation capture analysis indicate that the human genome is divided into conserved megabase-sized self-interacting regions called topological domains. These topological domains form the regulatory backbone of the genome and are separated by regulatory boundary elements or barriers. Copy-number variations can potentially alter the topological domain architecture by deleting or duplicating the barriers and thereby allowing enhancers from neighboring domains to ectopically activate genes causing misexpression and disease, a mutational mechanism that has recently been termed enhancer adoption. RESULTS: We use the Human Phenotype Ontology database to relate the phenotypes of 922 deletion cases recorded in the DECIPHER database to monogenic diseases associated with genes in or adjacent to the deletions. We identify combinations of tissue-specific enhancers and genes adjacent to the deletion and associated with phenotypes in the corresponding tissue, whereby the phenotype matched that observed in the deletion. We compare this computationally with a gene-dosage pathomechanism that attempts to explain the deletion phenotype based on haploinsufficiency of genes located within the deletions. Up to 11.8% of the deletions could be best explained by enhancer adoption or a combination of enhancer adoption and gene-dosage effects. CONCLUSIONS: Our results suggest that enhancer adoption caused by deletions of regulatory boundaries may contribute to a substantial minority of copy-number variation phenotypes and should thus be taken into account in their medical interpretation.


Subject(s)
Chromosomes, Human/genetics , Genetic Diseases, Inborn/genetics , Sequence Deletion , DNA Copy Number Variations , Databases, Genetic , Gene Dosage , Gene Ontology , Genome, Human , Genomics , Haploinsufficiency , Humans , Models, Genetic , Molecular Sequence Annotation , Phenotype
19.
Mol Cell Biochem ; 396(1-2): 137-45, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25064449

ABSTRACT

Three mutations in the highly conserved DNA-binding region of c-MAF (R288P, K297R, and R299S) are associated with phenotypically distinct forms of autosomal dominant congenital cataract. However, the molecular mechanisms underlying this phenotypic diversity remain unclear. In this work, we have investigated the hypothesis that differential transactivation of MAF target genes could be one factor determining the phenotypic differences. Promoter constructs were generated for four human crystallin genes with conserved half-site MAF responsive elements (MARE). MAF expression constructs were constructed with the wildtype MAF sequence and with each of the three known mutations, i.e., R288P (associated with pulverulent cataract), K297R (associated with cerulean cataract), and R299S (associated with the most severe phenotype, congenital cataract, and microcornea syndrome). Transactivation was measured using luciferase reporter assays following cotransfection in HEK cells. Responsiveness to wildtype c-MAF was established for each of the four crystallin promoter constructs. The same constructs were then investigated using c-MAF mutants corresponding to each of the three mutations. A differential response was noted for each of the tested crystallin genes. The mutation R288P significantly reduced the expression of the CRYGA and CRYBA1 constructs but had no significant effect on the other two constructs. K297R did not lead to a significant reduction in expression of any of the four constructs, although there was a tendency toward reduced expression especially for the CRYGA construct. R299S, which is associated with the most severe phenotype, congenital cataract, and microcornea syndrome, was associated with the most severe overall effect on the transactivation of the four crystallin expression constructs. Our findings suggest that differential effects of mutations on the transactivation potential of c-MAF could be a molecular correlate of the striking genotype-phenotype correlations seen in cataract forms caused by mutations in the MAF gene.


Subject(s)
Cataract/genetics , Crystallins/genetics , Mutation , Proto-Oncogene Proteins c-maf/genetics , Amino Acid Sequence , Base Sequence , Cataract/congenital , Eye Diseases, Hereditary/genetics , Gene Expression Regulation , Genetic Association Studies , Humans , Molecular Sequence Data , Promoter Regions, Genetic , Response Elements , beta-Crystallin A Chain/genetics
20.
Mol Genet Metab ; 112(4): 310-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24913064

ABSTRACT

Autosomal recessive cutis laxa (ARCL) type 2 constitutes a heterogeneous group of diseases mainly characterized by lax and wrinkled skin, skeletal anomalies, and a variable degree of intellectual disability. ALDH18A1-related ARCL is the most severe form within this disease spectrum. Here we report on the clinical and molecular findings of two affected individuals from two unrelated families. The patients presented with typical features of de Barsy syndrome and an overall progeroid appearance. However, the phenotype was highly variable including cardiovascular involvement in the more severe case. Investigation of a skin biopsy of one patient revealed not only the typical alterations of elastic fibers, but also an altered structure of mitochondria in cutaneous fibroblasts. Using conventional sequencing and copy number analysis we identified a frameshift deletion of one nucleotide and a microdeletion affecting the ALDH18A1 gene, respectively, in a homozygous state in both patients. Expression analysis in dermal fibroblasts from the patient carrying the microdeletion showed an almost complete absence of the ALDH18A1 mRNA resulting in an absence of the ALDH18A1 protein. So far, only 13 affected individuals from seven unrelated families suffering from ALDH18A1-related cutis laxa have been described in literature. Our findings provide new insights into the clinical spectrum and show that beside point mutations microdeletions are a possible cause of ALDH18A1-ARCL.


Subject(s)
Aldehyde Dehydrogenase/genetics , Cardiovascular Diseases/complications , Cardiovascular Diseases/genetics , Cutis Laxa/congenital , Cutis Laxa/genetics , Gene Deletion , Aldehyde Dehydrogenase/metabolism , Amino Acids/blood , Base Sequence , Cardiovascular Diseases/blood , Child, Preschool , Cutis Laxa/blood , Cutis Laxa/complications , Fatal Outcome , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Homozygote , Humans , Infant, Newborn , Male , Molecular Sequence Data , Pedigree , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin/pathology , Skin/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...