Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Dentomaxillofac Radiol ; 49(6): 20190468, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32267774

ABSTRACT

OBJECTIVES: The aim of this study was to establish diagnostic reference levels (DRLs) in the field of dental maxillofacial and ear-nose-throat (ENT) practices using cone beam CT (CBCT) in Switzerland. METHODS: A questionnaire was sent to owners of CBCTs in Switzerland; to a total of 612 institutions. The answers were analyzed for each indication, provided that enough data were available. The DRLs were defined as the 75th percentile of air kerma product distribution (PKA). RESULTS: 227 answers were collected (38% of all centers). Third quartile of PKA values were obtained for five dental indications: 662 mGy cm² for wisdom tooth, 683 mGy cm² for single tooth implant treatment, 542 mGy cm² for tooth position anomalies, 569 mGy cm² for pathological dentoalveolar modifications, and 639 mGy cm² for endodontics. The standard field of view (FOV) size of 5 cm in diameter x 5 cm in height was proposed. CONCLUSIONS: Large ranges of FOV and PKA were found for a given indication, demonstrating the importance of establishing DRLs as well as FOV recommendations in view of optimizing the present practice. For now, only DRLs for dental and maxillofacial could be defined; because of a lack of ENT data, no DRL values for ENT practices could be derived from this survey.


Subject(s)
Cone-Beam Computed Tomography , Radiation Dosage , Reference Values , Surveys and Questionnaires , Switzerland
2.
Z Med Phys ; 27(2): 86-97, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27156923

ABSTRACT

PURPOSE: This study aims to assess CT image quality in a way that would meet specific requirements of clinical practice. Physics metrics like Fourier transform derived metrics were traditionally employed for that. However, assessment methods through a detection task have also developed quite extensively lately, and we chose here to rely on this modality for image quality assessment. Our goal was to develop a tool adapted for a fast and reliable CT image quality assessment in order to pave the way for new CT benchmarking techniques in a clinical context. Additionally, we also used this method to estimate the benefits brought by some IR algorithms. MATERIALS AND METHODS: A modified QRM chest phantom containing spheres of 5 and 8mm at contrast levels of 10 and 20HU at 120kVp was used. Images of the phantom were acquired at CTDIvol of 0.8, 3.6, 8.2 and 14.5mGy, before being reconstructed using FBP, ASIR 40 and MBIR on a GE HD 750 CT scanner. They were then assessed by eight human observers undergoing a 4-AFC test. After that, these data were compared with the results obtained from two different model observers (NPWE and CHO with DDoG channels). The study investigated the effects of the acquisition conditions as well as reconstruction methods. RESULTS: NPWE and CHO models both gave coherent results and approximated human observer results well. Moreover, the reconstruction technique used to retrieve the images had a clear impact on the PC values. Both models suggest that switching from FBP to ASIR 40 and particularly to MBIR produces an increase of the low contrast detection, provided a minimum level of exposure is reached. CONCLUSION: Our work shows that both CHO with DDoG channels and NPWE models both approximate the trend of humans performing a detection task. Both models also suggest that the use of MBIR goes along with an increase of the PCs, indicating that further dose reduction is still possible when using those techniques. Eventually, the CHO model associated to the protocol we described in this study happened to be an efficient way to assess CT images in a clinical environment. In the future, this simple method could represent a sound basis to benchmark clinical practice and CT devices.


Subject(s)
Benchmarking , Phantoms, Imaging , Tomography, X-Ray Computed/standards , Algorithms , Humans , Observer Variation , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed/methods
3.
Radiat Prot Dosimetry ; 169(1-4): 68-72, 2016 06.
Article in English | MEDLINE | ID: mdl-26962148

ABSTRACT

The goal of the present work was to report and investigate the performances of a new iterative reconstruction algorithm, using a model observer. For that, a dedicated low-contrast phantom containing different targets was scanned at four volume computed tomography dose index (CTDIvol) levels on a Siemens SOMATOM Force computed tomography (CT). The acquired images were reconstructed using the ADMIRE algorithm and were then assessed by three human observers who performed alternative forced choice experiments. Next, a channelised hotelling observer model was applied on the same set of images. The comparison between the two was performed using the percentage correct as a figure of merit. The results indicated a strong agreement between human and model observer as well as an improvement in the low-contrast detection when switching from an ADMIRE strength of 1-3. Good results were also observed even in situations where the target was hard to detect, suggesting that patient dose could be further reduced and optimised.

4.
Radiat Prot Dosimetry ; 169(1-4): 78-83, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26940439

ABSTRACT

Patient dose optimisation in computed tomography (CT) should be done using clinically relevant tasks when dealing with image quality assessments. In the present work, low-contrast detectability for an average patient morphology was assessed on 56 CT units, using a model observer applied on images acquired with two specific protocols of an anthropomorphic phantom containing spheres. Images were assessed using the channelised Hotelling observer (CHO) with dense difference of Gaussian channels. The results were computed by performing receiver operating characteristics analysis (ROC) and using the area under the ROC curve (AUC) as a figure of merit. The results showed a small disparity at a volume computed tomography dose index (CTDIvol) of 15 mGy depending on the CT units for the chosen image quality criterion. For 8-mm targets, AUCs were 0.999 ± 0.018 at 20 Hounsfield units (HU) and 0.927 ± 0.054 at 10 HU. For 5-mm targets, AUCs were 0.947 ± 0.059 and 0.702 ± 0.068 at 20 and 10 HU, respectively. The robustness of the CHO opens the way for CT protocol benchmarking and optimisation processes.


Subject(s)
Benchmarking/standards , Radiation Exposure/analysis , Radiation Monitoring/standards , Radiation Protection/standards , Radiographic Image Enhancement/standards , Tomography, X-Ray Computed/standards , Practice Guidelines as Topic , Radiation Exposure/prevention & control , Reproducibility of Results , Sensitivity and Specificity , Switzerland
5.
Radiat Prot Dosimetry ; 169(1-4): 73-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26922787

ABSTRACT

Evaluating image quality by using receiver operating characteristic studies is time consuming and difficult to implement. This work assesses a new iterative algorithm using a channelised Hotelling observer (CHO). For this purpose, an anthropomorphic abdomen phantom with spheres of various sizes and contrasts was scanned at 3 volume computed tomography dose index (CTDIvol) levels on a GE Revolution CT. Images were reconstructed using the iterative reconstruction method adaptive statistical iterative reconstruction-V (ASIR-V) at ASIR-V 0, 50 and 70 % and assessed by applying a CHO with dense difference of Gaussian and internal noise. Both CHO and human observers (HO) were compared based on a four-alternative forced-choice experiment, using the percentage correct as a figure of merit. The results showed accordance between CHO and HO. Moreover, an improvement in the low-contrast detection was observed when switching from ASIR-V 0 to 50 %. The results underpin the finding that ASIR-V allows dose reduction.


Subject(s)
Algorithms , Imaging, Three-Dimensional/methods , Radiation Exposure/prevention & control , Radiographic Image Enhancement/methods , Radiography, Abdominal/methods , Tomography, X-Ray Computed/methods , Humans , Image Enhancement/methods , Observer Variation , Radiation Exposure/analysis , Radiation Protection/methods , Reproducibility of Results , Sensitivity and Specificity
6.
J Med Imaging (Bellingham) ; 3(1): 011009, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26719849

ABSTRACT

X-ray medical imaging is increasingly becoming three-dimensional (3-D). The dose to the population and its management are of special concern in computed tomography (CT). Task-based methods with model observers to assess the dose-image quality trade-off are promising tools, but they still need to be validated for real volumetric images. The purpose of the present work is to evaluate anthropomorphic model observers in 3-D detection tasks for low-contrast CT images. We scanned a low-contrast phantom containing four types of signals at three dose levels and used two reconstruction algorithms. We implemented a multislice model observer based on the channelized Hotelling observer (msCHO) with anthropomorphic channels and investigated different internal noise methods. We found a good correlation for all tested model observers. These results suggest that the msCHO can be used as a relevant task-based method to evaluate low-contrast detection for CT and optimize scan protocols to lower dose in an efficient way.

7.
Phys Med ; 32(1): 76-83, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26515665

ABSTRACT

PURPOSE: Iterative algorithms introduce new challenges in the field of image quality assessment. The purpose of this study is to use a mathematical model to evaluate objectively the low contrast detectability in CT. MATERIALS AND METHODS: A QRM 401 phantom containing 5 and 8 mm diameter spheres with a contrast level of 10 and 20 HU was used. The images were acquired at 120 kV with CTDIvol equal to 5, 10, 15, 20 mGy and reconstructed using the filtered back-projection (FBP), adaptive statistical iterative reconstruction 50% (ASIR 50%) and model-based iterative reconstruction (MBIR) algorithms. The model observer used is the Channelized Hotelling Observer (CHO). The channels are dense difference of Gaussian channels (D-DOG). The CHO performances were compared to the outcomes of six human observers having performed four alternative forced choice (4-AFC) tests. RESULTS: For the same CTDIvol level and according to CHO model, the MBIR algorithm gives the higher detectability index. The outcomes of human observers and results of CHO are highly correlated whatever the dose levels, the signals considered and the algorithms used when some noise is added to the CHO model. The Pearson coefficient between the human observers and the CHO is 0.93 for FBP and 0.98 for MBIR. CONCLUSION: The human observers' performances can be predicted by the CHO model. This opens the way for proposing, in parallel to the standard dose report, the level of low contrast detectability expected. The introduction of iterative reconstruction requires such an approach to ensure that dose reduction does not impair diagnostics.


Subject(s)
Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Calibration , Contrast Media , Humans , Liver/radiation effects , Models, Theoretical , Muscle, Skeletal/radiation effects , Observer Variation , Phantoms, Imaging , Programming Languages , Reproducibility of Results , Spleen/radiation effects
8.
Semin Musculoskelet Radiol ; 19(5): 415-21, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26696079

ABSTRACT

Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.


Subject(s)
Bone Diseases/diagnostic imaging , Image Processing, Computer-Assisted/methods , Muscular Diseases/diagnostic imaging , Musculoskeletal System/diagnostic imaging , Radiation Dosage , Tomography, X-Ray Computed/methods , Humans , Radiographic Image Interpretation, Computer-Assisted/methods
9.
Semin Musculoskelet Radiol ; 19(5): 431-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26696081

ABSTRACT

In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.


Subject(s)
Musculoskeletal System/diagnostic imaging , Radiation Dosage , Radiography, Dual-Energy Scanned Projection , Tomography, X-Ray Computed , Artifacts , Humans , Metals
10.
AJR Am J Roentgenol ; 203(6): W665-73, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25415733

ABSTRACT

OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.


Subject(s)
Arthrography/methods , Data Interpretation, Statistical , Hip Joint/diagnostic imaging , Joint Diseases/diagnostic imaging , Multidetector Computed Tomography/methods , Radiation Dosage , Radiation Protection/methods , Adult , Aged , Algorithms , Feasibility Studies , Humans , Middle Aged , Radiographic Image Enhancement , Radiographic Image Interpretation, Computer-Assisted , Reproducibility of Results , Sensitivity and Specificity
11.
Phys Med Biol ; 59(15): 4047-64, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24990844

ABSTRACT

The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.


Subject(s)
Algorithms , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Humans , Lung/diagnostic imaging , Phantoms, Imaging , Sensitivity and Specificity
12.
Acta Radiol ; 55(3): 335-44, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23897308

ABSTRACT

BACKGROUND: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography (MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. PURPOSE: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. MATERIAL AND METHODS: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 to 5) techniques. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at C3-C4 and C6-C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. RESULTS: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at C3-C4 and C6-C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ≤ 0.03). Conversely, for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001). CONCLUSION: The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended.


Subject(s)
Cervical Vertebrae/diagnostic imaging , Multidetector Computed Tomography/methods , Neck Pain/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Prospective Studies , Radiation Dosage , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...