Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36139544

ABSTRACT

BACKGROUND: Although DNA methylation in the gene promoters usually represses gene expression, the TERT hypermethylated oncological region (THOR) located 5' of the hTERT gene is hypermethylated when hTERT is expressed in diverse cancer types, including urothelial cancer (UC). METHODS: Comprehensive MeDIP and DNA methylation array analyses complemented by the technically independent method of bisulfite genomic sequencing were applied on pathologically reviewed and classified urothelial carcinoma specimens and healthy urothelial tissue samples to reveal the methylation status of THOR in detail. RESULTS: The detailed DNA methylation profiles reveal the exact positions of differentially methylated CpG dinucleotides within THOR in urothelial cancer and provide evidence ofa diverging role of methylation of these CpGs in the regulation of hTERT. In particular, our data suggest a regulating mechanism in which THOR methylation acts on hTERT expression through epigenetic silencing of the lncRNA hTERT antisense promoter-associated (hTAPAS), which represses hTERT. CONCLUSIONS: These findings precisely define the most differentially methylated CpGs of THOR in early urothelial cancer, enabling optimal design of Methylation-Specific PCR (MSPCR) primers to reliably probe these methylation differences for diagnostic and prognostic purposes. In addition, this strategy presents a prime example that is also applicable to many other malignancies. Finally, the first evidence for the underlying epigenetic mechanism regulating hTERT expression through the methylation status of THOR is provided.

3.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163453

ABSTRACT

Epigenetic mechanisms are fundamentally important for cancer initiation and development. However, a survey of the literature reveals that, to date, they appear less comprehensively investigated in melanoma than in many other cancers, e.g., prostate, breast, and colon carcinoma. The aim of this review is to provide a short summary of epigenetic aspects of functional relevance for melanoma pathogenesis. In addition, some new perspectives from epigenetic research in other cancers with potential for melanoma diagnosis and therapy are introduced. For example, the PrimeEpiHit hypothesis in urothelial carcinoma, which, similarly to malignant melanoma, can also be triggered by a single exogenous noxa, states that one of the first steps for cancer initiation could be epigenetic changes in key genes of one-carbon metabolism. The application of such insights may contribute to further progress in the diagnosis and therapy of melanoma, a deadly type of cancer.


Subject(s)
Epigenesis, Genetic , Gene Regulatory Networks , Melanoma/genetics , DNA Methylation , Early Detection of Cancer , Humans , Melanoma/diagnosis , Melanoma/therapy
4.
Int J Mol Sci ; 24(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613831

ABSTRACT

With approximately 1.4 million men annually diagnosed with prostate cancer (PCa) worldwide, PCa remains a dreaded threat to life and source of devastating morbidity. In recent decades, a significant decrease in age-specific PCa mortality has been achieved by increasing prostate-specific antigen (PSA) screening and improving treatments. Nevertheless, upcoming, augmented recommendations against PSA screening underline an escalating disproportion between the benefit and harm of current diagnosis/prognosis and application of radical treatment standards. Undoubtedly, new potent diagnostic and prognostic tools are urgently needed to alleviate this tensed situation. They should allow a more reliable early assessment of the upcoming threat, in order to enable applying timely adjusted and personalized therapy and monitoring. Here, we present a basic study on an epigenetic screening approach by Methylated DNA Immunoprecipitation (MeDIP). We identified genes associated with hypomethylated CpG islands in three PCa sample cohorts. By adjusting our computational biology analyses to focus on single CpG-enriched 60-nucleotide-long DNA probes, we revealed numerous consistently differential methylated DNA segments in PCa. They were associated among other genes with NOTCH3, CDK2AP1, KLK4, and ADAM15. These can be used for early discrimination, and might contribute to a new epigenetic tumor classification system of PCa. Our analysis shows that we can dissect short, differential methylated CpG-rich DNA fragments and combinations of them that are consistently present in all tumors. We name them tumor cell-specific differential methylated CpG dinucleotide signatures (TUMS).


Subject(s)
DNA Methylation , Prostatic Neoplasms , Humans , Male , ADAM Proteins/genetics , CpG Islands , DNA , Membrane Proteins/genetics , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
5.
Sci Rep ; 10(1): 22127, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335196

ABSTRACT

LINE-1 hypomethylation of cell-free DNA has been described as an epigenetic biomarker of human aging. However, in the past, insufficient differentiation between cellular and cell-free DNA may have confounded analyses of genome-wide methylation levels in aging cells. Here we present a new methodological strategy to properly and unambiguously extract DNA methylation patterns of repetitive, as well as single genetic loci from pure cell-free DNA from peripheral blood. Since this nucleic acid fraction originates mainly in apoptotic, senescent and cancerous cells, this approach allows efficient analysis of aged and cancerous cell-specific DNA methylation patterns for diagnostic and prognostic purposes. Using this methodology, we observe a significant age-associated erosion of LINE-1 methylation in cfDNA suggesting that the threshold of hypomethylation sufficient for relevant LINE-1 activation and consequential harmful retrotransposition might be reached at higher age. We speculate that this process might contribute to making aging the main risk factor for many cancers.


Subject(s)
Aging/genetics , Cell-Free Nucleic Acids , DNA Methylation , Epigenesis, Genetic , Epigenomics , Long Interspersed Nucleotide Elements , Retroelements , Adult , Age Factors , Biomarkers , Epigenomics/methods , Female , Healthy Volunteers , Humans , Male , Middle Aged , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...