Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Sensors (Basel) ; 23(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36772199

ABSTRACT

Low-cost monitors make it possible now for the first time to collect long-term (months to years) measurements of potential indoor exposure to fine particles. Indoor exposure is due to two sources: particles infiltrating from outdoors and those generated by indoor activities. Calculating the relative contribution of each source requires identifying an infiltration factor. We develop a method of identifying periods when the infiltration factor is not constant and searching for periods when it is relatively constant. From an initial regression of indoor on outdoor particle concentrations, a Forbidden Zone can be defined with an upper boundary below which no observations should appear. If many observations appear in the Forbidden Zone, they falsify the assumption of a single constant infiltration factor. This is a useful quality assurance feature, since investigators may then search for subsets of the data in which few observations appear in the Forbidden Zone. The usefulness of this approach is illustrated using examples drawn from the PurpleAir network of optical particle monitors. An improved algorithm is applied with reduced bias, improved precision, and a lower limit of detection than either of the two proprietary algorithms offered by the manufacturer of the sensors used in PurpleAir monitors.

2.
Sci Total Environ ; 852: 158244, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36037897

ABSTRACT

The widespread legalization of recreational marijuana raises growing concerns about exposure to secondhand marijuana smoke. An important location for marijuana smoking is the home, but few measurements of air pollutant concentrations in the home are available for a marijuana joint fully smoked in one of its rooms. We used research grade calibrated real-time continuous PM2.5 air monitors in controlled 5-hour experiments to measure fine particle concentrations in the 9 rooms of a detached, two-story, 4-bedroom home with either a tobacco cigarette or a marijuana joint fully smoked in the home's living room. The master bedroom's door was closed, and the other bedroom doors were open, as was the custom of occupants of this residence. In two experiments with a Marlboro tobacco cigarette smoked by a machine in the living room, the 5-hour mean PM2.5 concentrations in 9 rooms of the home were 15.2 µg/m3 (SD 5.6 µg/m3) and 15.0 µg/m3 (SD 3.7 µg/m3). In contrast, three experiments with pre-rolled marijuana joints smoked in the same manner in the living room produced 5-hour mean PM2.5 concentrations of 38.9 µg/m3 (SD 10.6 µg/m3), 79.8 µg/m3 (SD 25.7 µg/m3) and 80.7 µg/m3 (SD 28.8 µg/m3). In summary, the average secondhand PM2.5 concentrations from smoking a marijuana joint in the home were found to be 4.4 times as great as the secondhand PM2.5 concentrations from smoking a tobacco cigarette. Opening 3 windows by 12.7 cm reduced the high PM2.5 concentrations from marijuana smoking by 67 %, but the PM2.5 levels still exceeded those produced by tobacco smoking with the windows closed.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Cannabis , Tobacco Products , Tobacco Smoke Pollution , Nicotiana , Tobacco Smoke Pollution/analysis , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Particulate Matter/analysis
3.
Sci Total Environ ; 802: 149897, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34464798

ABSTRACT

We conducted 35 experiments for spatial measurement of marijuana aerosols in a current smoker's residential spaces. Fine particulate matter (PM2.5) concentrations were measured every second at 1, 2, and 3 m horizontal distances from the smoker who performed prescribed 5-min smoking and vaping activities. In each experiment, five SidePak monitors measured PM2.5 concentrations at five different angles facing the front of the smoker, representing the worst-case exposures. We studied the effect of distance from the smoker for two marijuana sources - smoking a marijuana cigarette, or joint, and vaping a liquid-cartridge vaping pen. Experiments were conducted in the family room indoors and in the backyard outdoors where the smoker normally consumes marijuana. Indoor marijuana vaping had higher average exposures (5-min PM2.5) at 1 m distance than indoor marijuana smoking, but the levels from indoor vaping decreased more rapidly with distance (e.g., 77% reduction for vaping versus 33% for smoking from 1 to 2 m). Smoking and vaping in the outdoor environment reduce the average exposures down to <5% of the indoor levels at each distance. Cumulative frequency distributions of the 1-s PM2.5 concentrations revealed the frequencies of exceeding any selected transient peak exposure limit at a given distance. The frequency of exceedance decreased more quickly with distance for vaping than for smoking. Smoking and vaping outdoors made the transient peak exposures close to the source much less frequent than smoking and vaping indoors (e.g., <1% exceeded 1000 µg/m3 outdoors versus >20% indoors at 1 m). Plotting the frequency of exceedance versus distance could offer additional guidance for a recommended minimum distance from a marijuana source.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Marijuana Smoking , Vaping , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Particle Size , Particulate Matter/analysis
4.
J Air Waste Manag Assoc ; 69(4): 459-477, 2019 04.
Article in English | MEDLINE | ID: mdl-30427279

ABSTRACT

This paper describes a long-term trend study of passenger exposure to carbon monoxide (CO) inside a vehicle traveling on an arterial highway in northern California. CO exposure was measured during four field surveys on State Route #82 (El Camino Real) on the San Francisco Peninsula in 1980-1981, 1991-1992, 2001-2002, and 2010-2011. Each field survey took at least 12 months. Fifty trips from each survey-for a total of 200 trips-were matched by date, day of the week, and starting time of the day to facilitate comparisons over three decades. The mean net CO concentration of each trip was obtained by subtracting the background CO level from the average CO concentration for the entire trip. The mean net CO concentration (0.5 ppm) for 2010-2011 was only 5.2% of that (9.7 ppm) for 1980-1981. For the 50 trips, the average travel time for the 1980-1981 period (39.6 min) was only 8.3% higher than during the 2010-2011 period (36.3 min). The estimated round-trip distance on the highway was held constant at 11.8 miles. The reduction in the mean net CO concentration was attributed to more stringent CO emission standards on new vehicles sold in California since 1980. The state's cold-temperature CO standard implemented in 1996 appeared to reduce high CO concentrations that were observed during the late fall and winter of 1980-1981. In addition, the observed standard deviation in concentration fell from 3.1 ppm in 1980-1981 to 0.2 ppm in 2010-2011, and the range of the 50 mean net CO concentrations narrowed from 14.9 ppm in 1980-1981 to 1.1 ppm in 2010-2011, but the relative variability, as indicated by the geometric standard deviation, remained the same. These results have important scientific implications for regulatory policies designed to control air pollution from motor vehicles. Implications: Many developing countries launched or expanded their mobile source emission control programs in the 1990s, yet many of them do not have adequate inspection and maintenance (I/M) programs. The El Camino Real study shows the long-term public health benefits of more stringent motor vehicle emission standards for carbon monoxide (CO) on new cars and of an I/M program (Smog Check) on the existing fleet in California. The study provides a protocol for conducting standardized field surveys of in-vehicle exposure on a periodic basis. Such surveys would enable developing countries to assess the progress of their mobile source emission control programs.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Carbon Monoxide/analysis , Vehicle Emissions/analysis , Environmental Monitoring , Humans , Longitudinal Studies , San Francisco , Seasons
5.
Environ Sci Technol ; 51(3): 1140-1146, 2017 02 07.
Article in English | MEDLINE | ID: mdl-27997143

ABSTRACT

Ultrafine particles (UFP) produced by electric heating of stoves and metal cooking pans, absent food, have been hypothesized to be created from a surface film of semivolatile organic compounds (SVOCs) sorbed from the surrounding air. This study tests that hypothesis by size-resolved measurements extending the lower range of the UFP studied from 10 to 2.3 nm, and including other surfaces (glass, aluminum, and porcelain). Heating glass Petri dishes or squares of aluminum foil to about 350-400 °C for 4-6 min removed all sorbed organic substances completely. Subsequent exposure of these "clean" Petri dishes and foil squares to indoor air in two different residences for successively longer periods (1 h to 281 days), followed by heating the materials for 4-6 min, indicated a strong relationship of the number, size distribution, and mass of the UFP to the time exposed. Estimates of the accumulation rate of SVOCs on surfaces were similar to those in studies of organic film buildup on indoor windows. Transfer of skin oils by touching the glass or foil surfaces, or after washing the glass surface with detergent and bare hands, was also observed, with measured particle production comparable with that produced by long-term exposure to indoor air.


Subject(s)
Air Pollution, Indoor , Housing , Air Pollutants , Cooking , Heating , Organic Chemicals , Particle Size
6.
Article in English | MEDLINE | ID: mdl-26805860

ABSTRACT

Most casinos owned by sovereign American Indian nations allow smoking, even in U.S. states such as California where state laws restrict workplace smoking. Collaborations between casinos and public health workers are needed to promote smoke-free policies that protect workers and patrons from secondhand tobacco smoke (SHS) exposure and risks. Over seven years, a coalition of public health professionals provided technical assistance to the Redding Rancheria tribe in Redding, California in establishing a smoke-free policy at the Win-River Resort and Casino. The coalition provided information to the casino general manager that included site-specific measurement of employee and visitor PM2.5 personal exposure, area concentrations of airborne nicotine and PM2.5, visitor urinary cotinine, and patron and staff opinions (surveys, focus groups, and a Town Hall meeting). The manager communicated results to tribal membership, including evidence of high SHS exposures and support for a smoke-free policy. Subsequently, in concert with hotel expansion, the Redding Rancheria Tribal Council voted to accept a 100% restriction of smoking inside the casino, whereupon PM2.5 exposure in main smoking areas dropped by 98%. A 70% partial-smoke-free policy was instituted ~1 year later in the face of revenue loss. The success of the collaboration in promoting a smoke-free policy, and the key element of air quality feedback, which appeared to be a central driver, may provide a model for similar efforts.


Subject(s)
Air Pollution, Indoor/analysis , Health Resorts/legislation & jurisprudence , Nicotine/analysis , Public Health/legislation & jurisprudence , Smoke-Free Policy/legislation & jurisprudence , Tobacco Smoke Pollution/legislation & jurisprudence , California , Cooperative Behavior , Environmental Monitoring , Humans , Indians, North American
7.
Environ Sci Process Impacts ; 17(11): 1959-66, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26487426

ABSTRACT

Real-time particle monitors are essential for accurately estimating exposure to fine particles indoors. However, many such monitors tend to be prohibitively expensive for some applications, such as a tenant or homeowner curious about the quality of the air in their home. A lower cost version (the Dylos Air Quality Monitor) has recently been introduced, but it requires appropriate calibration to reflect the mass concentration units required for exposure assessment. We conducted a total of 64 experiments with a suite of instruments including a Dylos DC1100, another real-time laser photometer (TSI SidePak™ Model AM-510 Personal Aerosol Monitor), and a gravimetric sampling apparatus to estimate Dylos calibration factors for emissions from 17 different common indoor sources including cigarettes, incense, fried bacon, chicken, and hamburger. Comparison of minute-by-minute data from the Dylos with the gravimetrically calibrated SidePak yielded relationships that enable the conversion of the raw Dylos particle counts less than 2.5 µm (in #/0.01 ft(3)) to estimated PM2.5 mass concentration (e.g. µg m(-3)). The relationship between the exponentially-decaying Dylos particle counts and PM2.5 mass concentration can be described by a theoretically-derived power law with source-specific empirical parameters. A linear relationship (calibration factor) is applicable to fresh or quickly decaying emissions (i.e., before the aerosol has aged and differential decay rates introduce curvature into the relationship). The empirical parameters for the power-law relationships vary greatly both between and within source types, although linear factors appear to have lower uncertainty. The Dylos Air Quality Monitor is likely most useful for providing instantaneous feedback and context on mass particle levels in home and work situations for field-survey or personal awareness applications.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Particulate Matter/analysis , Aerosols/analysis , Air Pollution, Indoor/statistics & numerical data , Calibration , Environmental Monitoring/standards , Particle Size , Particulate Matter/standards
8.
J Air Waste Manag Assoc ; 64(1): 47-60, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24620402

ABSTRACT

UNLABELLED: As indoor smoking bans have become widely adopted, some U.S. communities are considering restricting smoking outdoors, creating a need for measurements of air pollution near smokers outdoors. Personal exposure experiments were conducted with four to five participants at six sidewalk bus stops located 1.5-3.3 m from the curb of two heavily traveled California arterial highways with 3300-5100 vehicles per hour. At each bus stop, a smoker in the group smoked a cigarette. Gravimetrically calibrated continuous monitors were used to measure fine particle concentrations (aerodynamic diameter < or = 2.5 microm; PM2.5) in the breathing zones (within 0.2 m from the nose and mouth) of each participant. At each bus stop, ultrafine particles (UFP), wind speed, temperature, relative humidity, and traffic counts were also measured. For 13 cigarette experiments, the mean PM2.5 personal exposure of the nonsmoker seated 0.5 m from the smoker during a 5-min cigarette ranged from 15 to 153 microg/m3. Of four persons seated on the bench, the smoker received the highest PM2.5 breathing-zone exposure of 192 microg/m3. There was a strong proximity effect: nonsmokers at distances 0.5, 1.0, and 1.5 m from the smoker received mean PM2.5 personal exposures of 59, 40, and 28 microg/m3, respectively, compared with a background level of 1.7 microg/m3. Like the PM2.5 concentrations, UFP concentrations measured 0.5 m from the smoker increased abruptly when a cigarette started and decreased when the cigarette ended, averaging 44,500 particles/cm3 compared with the background level of 7200 particles/cm3. During nonsmoking periods, the UFP background concentrations showed occasional peaks due to traffic, whereas PM2.5 background concentrations were extremely low. The results indicate that a single cigarette smoked outdoors at a bus stop can cause PM2.5 and UFP concentrations near the smoker that are 16-35 and 6.2 times, respectively, higher than the background concentrations due to cars and trucks on an adjacent arterial highway. IMPLICATIONS: Rules banning smoking indoors have been widely adopted in the United States and in many countries. Some communities are considering smoking bans that would apply to outdoor locations. Although many measurements are available of pollutant concentrations from secondhand smoke at indoor locations, few measurements are available of exposure to secondhand smoke outdoors. This study provides new data on exposure to fine and ultrafine particles from secondhand smoke near a smoker outdoors. The levels are compared with the exposure measured next to a highway. The findings are important for policies that might be developed for reducing exposure to secondhand smoke outdoors.


Subject(s)
Air Pollutants/chemistry , Particle Size , Particulate Matter/chemistry , Smoking , Transportation , California , Environmental Monitoring , Pilot Projects
9.
J Expo Sci Environ Epidemiol ; 24(3): 311-8, 2014.
Article in English | MEDLINE | ID: mdl-24064529

ABSTRACT

For an actively emitting source such as cooking or smoking, indoor measurements have shown a strong "proximity effect" within 1 m. The significant increase in both the magnitude and variation of concentration near a source is attributable to transient high peaks that occur sporadically-and these "microplumes" cause great uncertainty in estimating personal exposure. Recent field studies in naturally ventilated rooms show that close-proximity concentrations are approximately lognormally distributed. We use the autocorrelated random walk method to represent the time-varying directionality of indoor emissions, thereby predicting the time series and frequency distributions of concentrations close to an actively emitting point source. The predicted 5-min concentrations show good agreement with measurements from a point source of CO in a naturally ventilated house-the measured and predicted frequency distributions at 0.5- and 1-m distances are similar and approximately lognormal over a concentration range spanning three orders of magnitude. By including the transient peak concentrations, this random airflow modeling method offers a way to more accurately assess acute exposure levels for cases where well-defined airflow patterns in an indoor space are not available.


Subject(s)
Air Pollution , Environmental Exposure , Stochastic Processes , Ventilation , Probability
10.
Environ Sci Process Impacts ; 15(8): 1511-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23784066

ABSTRACT

Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 µm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)).


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/standards , Particulate Matter/analysis , Air Pollutants/standards , Calibration/standards , Cooking , Fires , Particle Size , Particulate Matter/standards
11.
J Environ Monit ; 14(1): 94-104, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22068152

ABSTRACT

Personal exposure to air pollutants can be substantially higher in close proximity to an active source due to non-instantaneous mixing of emissions. The research presented in this paper quantifies this proximity effect for a non-buoyant source in 2 naturally ventilated homes in Northern California (CA), assessing its spatial and temporal variation and the influence of factors such as ventilation rate on its magnitude. To quantify how proximity to residential sources of indoor air pollutants affects human exposure, we performed 16 separate monitoring experiments in the living rooms of two detached single-family homes. CO (as a tracer gas) was released from a point source in the center of the room at a controlled emission rate for 5-12 h per experiment, while an array of 30-37 real-time monitors simultaneously measured CO concentrations with 15 s time resolution at radial distances ranging from 0.25-5 m under a range of ventilation conditions. Concentrations measured in close proximity (within 1 m) to the source were highly variable, with 5 min averages that typically varied by >100-fold. This variability was due to short-duration (<1 min) pollutant concentration peaks ("microplumes") that were frequently recorded in close proximity to the source. We decomposed the random microplume component from the total concentrations by subtracting predicted concentrations that assumed uniform, instantaneous mixing within the room and found that these microplumes can be modeled using a 3-parameter lognormal distribution. Average concentrations measured within 0.25 m of the source were 6-20 times as high as the predicted well-mixed concentrations.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Air Pollution, Indoor/statistics & numerical data , Carbon Monoxide/analysis , Housing/statistics & numerical data , Humans , Models, Chemical
12.
J Environ Monit ; 13(6): 1695-702, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21589975

ABSTRACT

The amount of light scattered by airborne particles inside an aerosol photometer will vary not only with the mass concentration, but also with particle properties such as size, shape, and composition. This study conducted controlled experiments to compare the measurements of a real-time photometer, the SidePak AM510 monitor (SidePak), with gravimetric mass. PM sources tested were outdoor aerosols, and four indoor combustion sources: cigarettes, incense, wood chips, and toasting bread. The calibration factor for rescaling the SidePak measurements to agree with gravimetric mass was similar for the cigarette and incense sources, but different for burning wood chips and toasting bread. The calibration factors for ambient urban aerosols differed substantially from day to day, due to variations in the sources and composition of outdoor PM. A field evaluation inside a casino with active smokers yielded calibration factors consistent with those obtained in the controlled experiments with cigarette smoke.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Tobacco Smoke Pollution/analysis , Particulate Matter/analysis
13.
Environ Sci Technol ; 45(9): 4016-22, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21456572

ABSTRACT

For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.


Subject(s)
Air Pollution, Indoor/analysis , Carbon Monoxide/analysis , Environmental Exposure/analysis , Air Movements , Diffusion , Environmental Monitoring/methods , Housing , Models, Chemical , Ventilation
14.
Environ Res ; 111(4): 473-84, 2011 May.
Article in English | MEDLINE | ID: mdl-21440253

ABSTRACT

Smoking bans often exempt casinos, exposing occupants to fine particles (PM(2.5)) from secondhand smoke. We quantified the relative contributions to PM(2.5) from both secondhand smoke and infiltrating outdoor sources in US casinos. We measured real-time PM(2.5), particulate polycyclic aromatic hydrocarbons (PPAH), and carbon dioxide (CO(2)) (as an index of ventilation rate) inside and outside 8 casinos in Reno, Nevada. We combined these data with data from previous studies, yielding a total of 66 US casinos with smoking in California, Delaware, Nevada, New Jersey, and Pennsylvania, developing PM(2.5) frequency distributions, with 3 nonsmoking casinos for comparison. Geometric means for PM(2.5) were 53.8 µg/m(3) (range 18.5-205 µg/m(3)) inside smoking casinos, 4.3 µg/m(3) (range 0.26-29.7 µg/m(3)) outside those casinos, and 3.1 µg/m(3) (range 0.6-9 µg/m(3)) inside 3 nonsmoking casinos. In a subset of 21 Reno and Las Vegas smoking casinos, PM(2.5) in gaming areas averaged 45.2 µg/m(3) (95% CI, 37.7-52.7 µg/m(3)); adjacent nonsmoking casino restaurants averaged 27.2 µg/m(3) (95% CI, 17.5-36.9 µg/m(3)), while PM(2.5) outside the casinos averaged 3.9 µg/m(3) (95% CI, 2.5-5.3 µg/m(3)). For a subset of 10 Nevada and Pennsylvania smoking casinos, incremental (indoor-outdoor) PM(2.5) was correlated with incremental PPAH (R(2)=0.79), with ventilation rate-adjusted smoker density (R(2)=0.73), and with smoker density (R(2)=0.60), but not with ventilation rates (R(2)=0.15). PPAH levels in 8 smoking casinos in 3 states averaged 4 times outdoors. The nonsmoking casinos' PM(2.5) (n=3) did not differ from outdoor levels, nor did their PPAH (n=2). Incremental PM(2.5) from secondhand smoke in approximately half the smoking casinos exceeded a level known to produce cardiovascular morbidity in nonsmokers after less than 2h of exposure, posing acute health risks to patrons and workers. Casino ventilation and air cleaning practices failed to control secondhand smoke PM(2.5). Drifting PM(2.5) from secondhand smoke contaminated unseparated nonsmoking areas. Smoke-free casinos reduced PM(2.5) to the same low levels found outdoors.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/statistics & numerical data , Inhalation Exposure/statistics & numerical data , Particulate Matter/analysis , Tobacco Smoke Pollution/statistics & numerical data , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Risk Assessment , United States , Ventilation/statistics & numerical data
15.
J Expo Sci Environ Epidemiol ; 21(1): 31-41, 2011.
Article in English | MEDLINE | ID: mdl-20160761

ABSTRACT

Despite California's 1994 statewide smoking ban, exposure to secondhand smoke (SHS) continues in California's Indian casinos. Few data are available on exposure to airborne fine particles (PM2.5) in casinos, especially on a statewide basis. We sought to measure PM2.5 concentrations in Indian casinos widely distributed across California, exploring differences due to casino size, separation of smoking and non-smoking areas, and area smoker density. A selection of 36 out of the 58 Indian casinos throughout California were each visited for 1-3 h on weekend or holiday evenings, using two or more concealed monitors to measure PM2.5 concentrations every 10 s. For each casino, the physical dimensions and the number of patrons and smokers were estimated. As a preliminary assessment of representativeness, we also measured eight casinos in Reno, NV. The average PM2.5 concentration for the smoking slot machine areas (63 µg/m³) was nine times as high as outdoors (7 µg/m³), whereas casino non-smoking restaurants (29 µg/m³) were four times as high. Levels in non-smoking slot machine areas varied: complete physical separation reduced concentrations almost to outdoor levels, but two other separation types had mean levels that were 13 and 29 µg/m³, respectively, higher than outdoors. Elevated PM2.5 concentrations in casinos can be attributed primarily to SHS. Average PM2.5 concentrations during 0.5-1 h visits to smoking areas exceeded 35 µg/m³ for 90% of the casino visits.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Indians, North American/psychology , Particulate Matter/analysis , Smoking/ethnology , Tobacco Smoke Pollution/analysis , Air Pollutants/chemistry , California , Data Collection , Environmental Monitoring , Gambling , Humans , Particle Size , Particulate Matter/chemistry , Smoking/legislation & jurisprudence
16.
J Expo Sci Environ Epidemiol ; 21(1): 20-30, 2011.
Article in English | MEDLINE | ID: mdl-20087407

ABSTRACT

Personal exposure to ultrafine particles (UFP) can occur while people are cooking, driving, smoking, operating small appliances such as hair dryers, or eating out in restaurants. These exposures can often be higher than outdoor concentrations. For 3 years, portable monitors were employed in homes, cars, and restaurants. More than 300 measurement periods in several homes were documented, along with 25 h of driving two cars, and 22 visits to restaurants. Cooking on gas or electric stoves and electric toaster ovens was a major source of UFP, with peak personal exposures often exceeding 100,000 particles/cm³ and estimated emission rates in the neighborhood of 10¹² particles/min. Other common sources of high UFP exposures were cigarettes, a vented gas clothes dryer, an air popcorn popper, candles, an electric mixer, a toaster, a hair dryer, a curling iron, and a steam iron. Relatively low indoor UFP emissions were noted for a fireplace, several space heaters, and a laser printer. Driving resulted in moderate exposures averaging about 30,000 particles/cm³ in each of two cars driven on 17 trips on major highways on the East and West Coasts. Most of the restaurants visited maintained consistently high levels of 50,000-200,000 particles/cm³ for the entire length of the meal. The indoor/outdoor ratios of size-resolved UFP were much lower than for PM2.5 or PM10, suggesting that outdoor UFP have difficulty in penetrating a home. This in turn implies that outdoor concentrations of UFP have only a moderate effect on personal exposures if indoor sources are present. A time-weighted scenario suggests that for typical suburban nonsmoker lifestyles, indoor sources provide about 47% and outdoor sources about 36% of total daily UFP exposure and in-vehicle exposures add the remainder (17%). However, the effect of one smoker in the home results in an overwhelming increase in the importance of indoor sources (77% of the total).


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Particulate Matter/analysis , Automobiles , Cooking , Environmental Monitoring/methods , Housing , Humans , Particle Size , Particulate Matter/chemistry , Restaurants , Tobacco Smoke Pollution
17.
J Environ Monit ; 12(4): 846-53, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20383365

ABSTRACT

Electrochemical sensors are commonly used to measure concentrations of gaseous air pollutants in real time, especially for personal exposure investigations. The monitors are small, portable, and have suitable response times for estimating time-averaged concentrations. However, for transient exposures to air pollutants lasting only seconds to minutes, a non-instantaneous time response can cause measured values to diverge from actual input concentrations, especially when the pollutant fluctuations are pronounced and rapid. Using 38 Langan carbon monoxide (CO) monitors, which can be set to log data every 2 s, we found electrochemical sensor response times of 30-50 s. We derived a simple model based on Fick's Law to reconstruct a close to accurate time series from logged data. Starting with experimentally measured data for repetitive step input signals of alternating high and low CO concentrations, we were able to reconstruct a much improved 2-s concentration time series using the model. We also utilized the model to examine errors in monitor measurements for different averaging times. By selecting the averaging time based on the response time of the monitor, the error between actual and measured pollutant levels can be minimized. The methodology presented in this study is useful when aiming to accurately determine a time series of rapidly time-varying concentrations, such as for locations close to an active point source or near moving traffic.


Subject(s)
Air Pollutants/analysis , Electrochemical Techniques , Environmental Monitoring/instrumentation , Models, Chemical
18.
Exp Lung Res ; 34(10): 631-62, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19085563

ABSTRACT

Chronic obstructive pulmonary diseases (COPD) may increase air pollution-related mortality. The relationship of immune mechanisms to mortality caused by fine particulates in healthy and COPD populations is incompletely understood. The objective of this study was to determine whether fine particulates from a single biomass fuel alter stress and inflammation biomarkers in people with COPD. Healthy and COPD subjects were exposed to smoke in a controlled indoor setting. Immune responses were quantified by measuring cell surface marker expression with flow-cytometric analysis and mRNA levels with quantitative reverse transcriptase-polymerase chain reactions in whole blood before and after exposure. Preexposure COPD subjects had more leukocytes, mainly CD14(+) monocytes and neutrophils, but fewer CD3(+) T cells. Fifty-seven of 186 genes were differentially expressed between healthy and COPD subjects' peripheral blood mononuclear cells (PBMCs). Of these, only nuclear factor (NF)-kappa B1, TIMP-1, TIMP-2, and Duffy genes were up-regulated in COPD subjects. At 4 hours post smoke exposure, monocyte levels decreased only in healthy subjects. Fifteen genes, particular to inflammation, immune response, and cell-to-cell signaling, were differentially expressed in COPD subjects, versus 4 genes in healthy subjects. The authors observed significant differences in subjects' PBMCs, which may elucidate the adverse effects of air pollution particulates on people with COPD.


Subject(s)
Biomass , Particulate Matter/adverse effects , Pulmonary Disease, Chronic Obstructive/immunology , Smoke/adverse effects , Adult , Aged , Aged, 80 and over , Biomarkers , Cardiovascular Diseases/etiology , Flow Cytometry , Gene Expression Profiling , HLA-DR Antigens/analysis , Humans , Immunophenotyping , Lipopolysaccharide Receptors/analysis , Middle Aged , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/metabolism , Reverse Transcriptase Polymerase Chain Reaction
19.
J Expo Sci Environ Epidemiol ; 18(3): 312-25, 2008 May.
Article in English | MEDLINE | ID: mdl-17637707

ABSTRACT

The air change rates of motor vehicles are relevant to the sheltering effect from air pollutants entering from outside a vehicle and also to the interior concentrations from any sources inside its passenger compartment. We made more than 100 air change rate measurements on four motor vehicles under moving and stationary conditions; we also measured the carbon monoxide (CO) and fine particle (PM(2.5)) decay rates from 14 cigarettes smoked inside the vehicle. With the vehicle stationary and the fan off, the ventilation rate in air changes per hour (ACH) was less than 1 h(-1) with the windows closed and increased to 6.5 h(-1) with one window fully opened. The vehicle speed, window position, ventilation system, and air conditioner setting was found to affect the ACH. For closed windows and passive ventilation (fan off and no recirculation), the ACH was linearly related to the vehicle speed over the range from 15 to 72 mph (25 to 116 km h(-1)). With a vehicle moving, windows closed, and the ventilation system off (or the air conditioner set to AC Max), the ACH was less than 6.6 h(-1) for speeds ranging from 20 to 72 mph (32 to 116 km h(-1)). Opening a single window by 3'' (7.6 cm) increased the ACH by 8-16 times. For the 14 cigarettes smoked in vehicles, the deposition rate k and the air change rate a were correlated, following the equation k=1.3a (R(2)=82%; n=14). With recirculation on (or AC Max) and closed windows, the interior PM(2.5) concentration exceeded 2000 microg m(-3) momentarily for all cigarettes tested, regardless of speed. The concentration time series measured inside the vehicle followed the mathematical solutions of the indoor mass balance model, and the 24-h average personal exposure to PM(2.5) could exceed 35 microg m(-3) for just two cigarettes smoked inside the vehicle.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Tobacco Smoke Pollution/analysis , Vehicle Emissions/analysis , Air Movements , Environmental Exposure/adverse effects , Humans , Risk Assessment , Temperature , Time Factors , Tobacco Smoke Pollution/adverse effects , Vehicle Emissions/toxicity , Ventilation
20.
J Air Waste Manag Assoc ; 57(5): 522-34, 2007 May.
Article in English | MEDLINE | ID: mdl-17518219

ABSTRACT

The current lack of empirical data on outdoor tobacco smoke (OTS) levels impedes OTS exposure and risk assessments. We sought to measure peak and time-averaged OTS concentrations in common outdoor settings near smokers and to explore the determinants of time-varying OTS levels, including the effects of source proximity and wind. Using five types of real-time airborne particle monitoring devices, we obtained more than 8000 min worth of continuous monitoring data, during which there were measurable OTS levels. Measurement intervals ranged from 2 sec to 1 min for the different instruments. We monitored OTS levels during 15 on-site visits to 10 outdoor public places where active cigar and cigarette smokers were present, including parks, sidewalk cafés, and restaurant and pub patios. For three of the visits and during 4 additional days of monitoring outdoors and indoors at a private residence, we controlled smoking activity at precise distances from monitored positions. The overall average OTS respirable particle concentration for the surveys of public places during smoking was approximately 30 microg m(-3). OTS exhibited sharp spikes in particle mass concentration during smoking that sometimes exceeded 1000 microg m(-3) at distances within 0.5 m of the source. Some average concentrations over the duration of a cigarette and within 0.5 m exceeded 200 microg m(-3), with some average downwind levels exceeding 500 microg m(-3). OTS levels in a constant upwind direction from an active cigarette source were nearly zero. OTS levels also approached zero at distances greater than approximately 2 m from a single cigarette. During periods of active smoking, peak and average OTS levels near smokers rivaled indoor tobacco smoke concentrations. However, OTS levels dropped almost instantly after smoking activity ceased. Based on our results, it is possible for OTS to present a nuisance or hazard under certain conditions of wind and smoker proximity.


Subject(s)
Particulate Matter/analysis , Tobacco Smoke Pollution/analysis , Air/analysis , Air Pollution, Indoor/analysis , Calibration , Environmental Monitoring , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...