Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1283491, 2023.
Article in English | MEDLINE | ID: mdl-38075279

ABSTRACT

Using brain activity directly as input for assistive tool control can circumventmuscular dysfunction and increase functional independence for physically impaired people. The motor cortex is commonly targeted for recordings, while growing evidence shows that there exists decodable movement-related neural activity outside of the motor cortex. Several decoding studies demonstrated significant decoding from distributed areas separately. Here, we combine information from all recorded non-motor brain areas and decode executed and imagined movements using a Riemannian decoder. We recorded neural activity from 8 epilepsy patients implanted with stereotactic-electroencephalographic electrodes (sEEG), while they performed an executed and imagined grasping tasks. Before decoding, we excluded all contacts in or adjacent to the central sulcus. The decoder extracts a low-dimensional representation of varying number of components, and classified move/no-move using a minimum-distance-to-geometric-mean Riemannian classifier. We show that executed and imagined movements can be decoded from distributed non-motor brain areas using a Riemannian decoder, reaching an area under the receiver operator characteristic of 0.83 ± 0.11. Furthermore, we highlight the distributedness of the movement-related neural activity, as no single brain area is the main driver of performance. Our decoding results demonstrate a first application of a Riemannian decoder on sEEG data and show that it is able to decode from distributed brain-wide recordings outside of the motor cortex. This brief report highlights the perspective to explore motor-related neural activity beyond the motor cortex, as many areas contain decodable information.

2.
Sci Data ; 9(1): 434, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35869138

ABSTRACT

Speech production is an intricate process involving a large number of muscles and cognitive processes. The neural processes underlying speech production are not completely understood. As speech is a uniquely human ability, it can not be investigated in animal models. High-fidelity human data can only be obtained in clinical settings and is therefore not easily available to all researchers. Here, we provide a dataset of 10 participants reading out individual words while we measured intracranial EEG from a total of 1103 electrodes. The data, with its high temporal resolution and coverage of a large variety of cortical and sub-cortical brain regions, can help in understanding the speech production process better. Simultaneously, the data can be used to test speech decoding and synthesis approaches from neural data to develop speech Brain-Computer Interfaces and speech neuroprostheses.


Subject(s)
Speech , Electrocorticography , Electroencephalography , Humans , Reading , Speech/physiology
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6098-6101, 2021 11.
Article in English | MEDLINE | ID: mdl-34892508

ABSTRACT

Brain-Computer Interfaces (BCIs) that decode a patient's movement intention to control a prosthetic device could restore some independence to paralyzed patients. An important step on the road towards naturalistic prosthetic control is to decode movement continuously with low-latency. BCIs based on intracortical micro-arrays provide continuous control of robotic arms, but require a minor craniotomy. Surface recordings of neural activity using EEG have made great advances over the last years, but suffer from high noise levels and large intra-session variance. Here, we investigate the use of minimally invasive recordings using stereotactically implanted EEG (sEEG). These electrodes provide a sparse sampling across many brain regions. So far, promising decoding results have been presented using data measured from the subthalamic nucleus or trial-to-trial based methods using depth electrodes. In this work, we demonstrate that grasping movements can continuously be decoded using sEEG electrodes, as well. Beta and high-gamma activity was extracted from eight participants performing a grasping task. We demonstrate above chance level decoding of movement vs rest and left vs right, from both frequency bands with accuracies up to 0.94 AUC. The vastly different electrode locations between participants lead to large variability. In the future, we hope that sEEG recordings will provide additional information for the decoding process in neuroprostheses.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Electrodes , Hand Strength , Humans , Movement
4.
Commun Biol ; 4(1): 1055, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556793

ABSTRACT

Speech neuroprosthetics aim to provide a natural communication channel to individuals who are unable to speak due to physical or neurological impairments. Real-time synthesis of acoustic speech directly from measured neural activity could enable natural conversations and notably improve quality of life, particularly for individuals who have severely limited means of communication. Recent advances in decoding approaches have led to high quality reconstructions of acoustic speech from invasively measured neural activity. However, most prior research utilizes data collected during open-loop experiments of articulated speech, which might not directly translate to imagined speech processes. Here, we present an approach that synthesizes audible speech in real-time for both imagined and whispered speech conditions. Using a participant implanted with stereotactic depth electrodes, we were able to reliably generate audible speech in real-time. The decoding models rely predominately on frontal activity suggesting that speech processes have similar representations when vocalized, whispered, or imagined. While reconstructed audio is not yet intelligible, our real-time synthesis approach represents an essential step towards investigating how patients will learn to operate a closed-loop speech neuroprosthesis based on imagined speech.


Subject(s)
Brain-Computer Interfaces , Electrodes, Implanted/statistics & numerical data , Neural Prostheses/statistics & numerical data , Quality of Life , Speech , Female , Humans , Young Adult
5.
BMJ Open ; 11(7): e047347, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34281922

ABSTRACT

OBJECTIVE: Develop and validate models that predict mortality of patients diagnosed with COVID-19 admitted to the hospital. DESIGN: Retrospective cohort study. SETTING: A multicentre cohort across 10 Dutch hospitals including patients from 27 February to 8 June 2020. PARTICIPANTS: SARS-CoV-2 positive patients (age ≥18) admitted to the hospital. MAIN OUTCOME MEASURES: 21-day all-cause mortality evaluated by the area under the receiver operator curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value. The predictive value of age was explored by comparison with age-based rules used in practice and by excluding age from the analysis. RESULTS: 2273 patients were included, of whom 516 had died or discharged to palliative care within 21 days after admission. Five feature sets, including premorbid, clinical presentation and laboratory and radiology values, were derived from 80 features. Additionally, an Analysis of Variance (ANOVA)-based data-driven feature selection selected the 10 features with the highest F values: age, number of home medications, urea nitrogen, lactate dehydrogenase, albumin, oxygen saturation (%), oxygen saturation is measured on room air, oxygen saturation is measured on oxygen therapy, blood gas pH and history of chronic cardiac disease. A linear logistic regression and non-linear tree-based gradient boosting algorithm fitted the data with an AUC of 0.81 (95% CI 0.77 to 0.85) and 0.82 (0.79 to 0.85), respectively, using the 10 selected features. Both models outperformed age-based decision rules used in practice (AUC of 0.69, 0.65 to 0.74 for age >70). Furthermore, performance remained stable when excluding age as predictor (AUC of 0.78, 0.75 to 0.81). CONCLUSION: Both models showed good performance and had better test characteristics than age-based decision rules, using 10 admission features readily available in Dutch hospitals. The models hold promise to aid decision-making during a hospital bed shortage.


Subject(s)
COVID-19 , Cohort Studies , Humans , Logistic Models , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...