Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 4(2): eaao3603, 2018 02.
Article in English | MEDLINE | ID: mdl-29423443

ABSTRACT

We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk.

2.
Phys Rev Lett ; 113(7): 070401, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25170691

ABSTRACT

We propose a technique for engineering momentum-dependent dissipation in Bose-Einstein condensates with nonlocal interactions. The scheme relies on the use of momentum-dependent dark states in close analogy to velocity-selective coherent population trapping. During the short-time dissipative dynamics, the system is driven into a particular finite-momentum phonon mode, which in real space corresponds to an ordered structure with nonlocal density-density correlations. Dissipation-induced ordering can be observed and studied in present-day experiments using cold atoms with dipole-dipole or off-resonant Rydberg interactions. Because of its dissipative nature, the ordering does not require artificial breaking of translational symmetry by an optical lattice or harmonic trap. This opens up a perspective of direct cooling of quantum gases into strongly interacting phases.

3.
Phys Rev Lett ; 111(11): 113001, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-24074081

ABSTRACT

The coupling of weak light fields to Rydberg states of atoms under conditions of electromagnetically induced transparency leads to the formation of Rydberg polaritons which are quasiparticles with tunable effective mass and nonlocal interactions. Confined to one spatial dimension their low energy physics is that of a moving-frame Luttinger liquid which, due to the nonlocal character of the repulsive interaction, can form a Wigner crystal of individual photons. We calculate the Luttinger K parameter using density-matrix renormalization group simulations and find that under typical slow-light conditions kinetic energy contributions are too strong for crystal formation. However, adiabatically increasing the polariton mass by turning a light pulse into stationary spin excitations allows us to generate true crystalline order over a finite length. The dynamics of this process and asymptotic correlations are analyzed in terms of a time-dependent Luttinger theory.

4.
Phys Rev Lett ; 110(12): 120402, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-25166780

ABSTRACT

We present and analyze a new approach for the generation of atomic spin-squeezed states. Our method involves the collective coupling of an atomic ensemble to a decaying mode of an open optical cavity. We demonstrate the existence of a collective atomic dark state, decoupled from the radiation field. By explicitly constructing this state we find that it can feature spin squeezing bounded only by the Heisenberg limit. We show that such dark states can be deterministically prepared via dissipative means, thus turning dissipation into a resource for entanglement. The scaling of the phase sensitivity taking realistic imperfections into account is discussed.

5.
Phys Rev Lett ; 107(21): 213601, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22181878

ABSTRACT

We present a theory of electromagnetically induced transparency in a cold ensemble of strongly interacting Rydberg atoms. Long-range interactions between the atoms constrain the medium to behave as a collection of superatoms, each comprising a blockade volume that can accommodate at most one Rydberg excitation. The propagation of a probe field is affected by its two-photon correlations within the blockade distance, which are strongly damped due to low saturation threshold of the superatoms. Our model is computationally very efficient and is in quantitative agreement with the results of the recent experiment of Pritchard et al. [Phys. Rev. Lett. 105, 193603 (2010)].

6.
Phys Rev Lett ; 107(13): 133602, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-22026852

ABSTRACT

We develop the theory of light propagation under the conditions of electromagnetically induced transparency in systems involving strongly interacting Rydberg states. Taking into account the quantum nature and the spatial propagation of light, we analyze interactions involving few-photon pulses. We show that this system can be used for the generation of nonclassical states of light including trains of single photons with an avoided volume between them, for implementing photon-photon gates, as well as for studying many-body phenomena with strongly correlated photons.

7.
Phys Rev Lett ; 105(6): 060502, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20867964

ABSTRACT

We propose a new protocol for implementing the two-qubit photonic phase gate. In our approach, the π phase is acquired by mapping two single photons into atomic excitations with fermionic character and exchanging their positions. The fermionic excitations are realized as spin waves in a spin chain, while photon storage techniques provide the interface between the photons and the spin waves. Possible imperfections and experimental systems suitable for implementing the gate are discussed.

8.
Phys Rev Lett ; 101(16): 163601, 2008 Oct 17.
Article in English | MEDLINE | ID: mdl-18999667

ABSTRACT

We propose and analyze a mechanism for Bose-Einstein condensation of stationary dark-state polaritons. Dark-state polaritons (DSPs) are formed in the interaction of light with laser-driven 3-level Lambda-type atoms and are the basis of phenomena such as electromagnetically induced transparency, ultraslow, and stored light. They have long intrinsic lifetimes and in a stationary setup, a 3D quadratic dispersion profile with variable effective mass. Since DSPs are bosons, they can undergo a Bose-Einstein condensation at a critical temperature which can be many orders of magnitude larger than that of atoms. We show that thermalization of polaritons can occur via elastic collisions mediated by a resonantly enhanced optical Kerr nonlinearity on a time scale short compared to the decay time. Finally, condensation can be observed by turning stationary into propagating polaritons and monitoring the emitted light.

SELECTION OF CITATIONS
SEARCH DETAIL
...