Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35891062

ABSTRACT

The search for a highly portable and efficient supply of energy to run small-scale wireless gadgets has captivated the human race for the past few years. As a part of this quest, the idea of realizing a Quantum battery (QB) seems promising. Like any other practically tractable system, the design of QBs also involve several critical challenges. The main problem in this context is to ensure a lossless environment pertaining to the closed-system design of the QB, which is extremely difficult to realize in practice. Herein, we model and optimize various aspects of a Radio-Frequency (RF) Energy Harvesting (EH)-assisted, QB-enabled Internet-of-Things (IoT) system. Several RF-EH modules (in the form of micro- or nano-meter-sized integrated circuits (ICs)) are placed in parallel at the IoT receiver device, and the overall correspondingly harvested energy helps the involved Quantum sources achieve the so-called quasi-stable state. Concretely, the Quantum sources absorb the energy of photons that are emitted by a photon-emitting device controlled by a micro-controller, which also manages the overall harvested energy from the RF-EH ICs. To investigate the considered framework, we first minimize the total transmit power under the constraints on overall harvested energy and the number of RF-EH ICs at the QB-enabled wireless IoT device. Next, we optimize the number of RF-EH ICs, subject to the constraints on total transmit power and overall harvested energy. Correspondingly, we obtain suitable analytical solutions to the above-mentioned problems, respectively, and also cross-validate them using a non-linear program solver. The effectiveness of the proposed technique is reported in the form of numerical results, which are both theoretical and simulations based, by taking a range of operating system parameters into account.

2.
EURASIP J Wirel Commun Netw ; 2021(1): 194, 2021.
Article in English | MEDLINE | ID: mdl-34899875

ABSTRACT

Physical layer security (PLS) has been proposed to afford an extra layer of security on top of the conventional cryptographic techniques. Unlike the conventional complexity-based cryptographic techniques at the upper layers, physical layer security exploits the characteristics of wireless channels, e.g., fading, noise, interference, etc., to enhance wireless security. It is proved that secure transmission can benefit from fading channels. Accordingly, numerous researchers have explored what fading can offer for physical layer security, especially the investigation of physical layer security over wiretap fading channels. Therefore, this paper aims at reviewing the existing and ongoing research works on this topic. More specifically, we present a classification of research works in terms of the four categories of fading models: (i) small-scale, (ii) large-scale, (iii) composite, and (iv) cascaded. To elaborate these fading models with a generic and flexible tool, three promising candidates, including the mixture gamma (MG), mixture of Gaussian (MoG), and Fox's H-function distributions, are comprehensively examined and compared. Their advantages and limitations are further demonstrated via security performance metrics, which are designed as vivid indicators to measure how perfect secrecy is ensured. Two clusters of secrecy metrics, namely (i) secrecy outage probability (SOP), and the lower bound of SOP; and (ii) the probability of nonzero secrecy capacity (PNZ), the intercept probability, average secrecy capacity (ASC), and ergodic secrecy capacity, are displayed and, respectively, deployed in passive and active eavesdropping scenarios. Apart from those, revisiting the secrecy enhancement techniques based on Wyner's wiretap model, the on-off transmission scheme, jamming approach, antenna selection, and security region are discussed.

3.
EURASIP J Wirel Commun Netw ; 2021(1): 78, 2021.
Article in English | MEDLINE | ID: mdl-34777489

ABSTRACT

In unmanned aerial vehicle (UAV)-assisted networks, UAV acts as an aerial base station which acquires the requested data via backhaul link and then serves ground users (GUs) through an access network. In this paper, we investigate an energy minimization problem with a limited power supply for both backhaul and access links. The difficulties for solving such a non-convex and combinatorial problem lie at the high computational complexity/time. In solution development, we consider the approaches from both actor-critic deep reinforcement learning (AC-DRL) and optimization perspectives. First, two offline non-learning algorithms, i.e., an optimal and a heuristic algorithms, based on piecewise linear approximation and relaxation are developed as benchmarks. Second, toward real-time decision-making, we improve the conventional AC-DRL and propose two learning schemes: AC-based user group scheduling and backhaul power allocation (ACGP), and joint AC-based user group scheduling and optimization-based backhaul power allocation (ACGOP). Numerical results show that the computation time of both ACGP and ACGOP is reduced tenfold to hundredfold compared to the offline approaches, and ACGOP is better than ACGP in energy savings. The results also verify the superiority of proposed learning solutions in terms of guaranteeing the feasibility and minimizing the system energy compared to the conventional AC-DRL.

4.
Sensors (Basel) ; 21(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34577217

ABSTRACT

In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy-efficient manner while incorporating suitable network coverage expansion methodologies. To this end, this paper proposes a novel two-hop hybrid active-and-passive relaying scheme to facilitate simultaneous wireless information and power transfer (SWIPT) considering both time-switching (TS) and power-splitting (PS) receiver architectures, while dynamically modelling the involved dual-hop time-period (TP) metric. An optimization problem is formulated to jointly optimize the throughput, harvested energy, and transmit power of a SWIPT-enabled system with the proposed hybrid scheme. In this regard, we provide two distinct ways to obtain suitable solutions based on the Lagrange dual technique and Dinkelbach method assisted convex programming, respectively, where both the approaches yield an appreciable solution within polynomial computational time. The experimental results are obtained by directly solving the primal problem using a non-linear optimizer. Our numerical results in terms of weighted utility function show the superior performance of the proposed hybrid scheme over passive repeater-only and active relay-only schemes, while also depicting their individual performance benefits over the corresponding benchmark SWIPT systems with the fixed-TP.


Subject(s)
Algorithms , Social Networking , Internet
5.
IEEE Access ; 8: 153479-153507, 2020.
Article in English | MEDLINE | ID: mdl-34812349

ABSTRACT

Social distancing plays a pivotal role in preventing the spread of viral diseases illnesses such as COVID-19. By minimizing the close physical contact among people, we can reduce the chances of catching the virus and spreading it across the community. This two-part paper aims to provide a comprehensive survey on how emerging technologies, e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social distancing practice. In this Part I, we provide a comprehensive background of social distancing including basic concepts, measurements, models, and propose various practical social distancing scenarios. We then discuss enabling wireless technologies which are especially effect- in social distancing, e.g., symptom prediction, detection and monitoring quarantined people, and contact tracing. The companion paper Part II surveys other emerging and related technologies, such as machine learning, computer vision, thermal, ultrasound, etc., and discusses open issues and challenges (e.g., privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice.

6.
IEEE Access ; 8: 154209-154236, 2020.
Article in English | MEDLINE | ID: mdl-34812350

ABSTRACT

This two-part paper aims to provide a comprehensive survey on how emerging technologies, e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social distancing practice. In Part I, an extensive background of social distancing is provided, and enabling wireless technologies are thoroughly surveyed. In this Part II, emerging technologies such as machine learning, computer vision, thermal, ultrasound, etc., are introduced. These technologies open many new solutions and directions to deal with problems in social distancing, e.g., symptom prediction, detection and monitoring quarantined people, and contact tracing. Finally, we discuss open issues and challenges (e.g., privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice. As an example, instead of reacting with ad-hoc responses to COVID-19-like pandemics in the future, smart infrastructures (e.g., next-generation wireless systems like 6G, smart home/building, smart city, intelligent transportation systems) should incorporate a pandemic mode in their standard architectures/designs.

7.
Sensors (Basel) ; 19(16)2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31405153

ABSTRACT

The Dense Trajectories concept is one of the most successful approaches in action recognition, suitable for scenarios involving a significant amount of motion. However, due to noise and background motion, many generated trajectories are irrelevant to the actual human activity and can potentially lead to performance degradation. In this paper, we propose Localized Trajectories as an improved version of Dense Trajectories where motion trajectories are clustered around human body joints provided by RGB-D cameras and then encoded by local Bag-of-Words. As a result, the Localized Trajectories concept provides an advanced discriminative representation of actions. Moreover, we generalize Localized Trajectories to 3D by using the depth modality. One of the main advantages of 3D Localized Trajectories is that they describe radial displacements that are perpendicular to the image plane. Extensive experiments and analysis were carried out on five different datasets.

8.
IEEE Trans Pattern Anal Mach Intell ; 40(6): 1338-1351, 2018 06.
Article in English | MEDLINE | ID: mdl-28613161

ABSTRACT

In this paper, we introduce a deformation based representation space for curved shapes in . Given an ordered set of points sampled from a curved shape, the proposed method represents the set as an element of a finite dimensional matrix Lie group. Variation due to scale and location are filtered in a preprocessing stage, while shapes that vary only in rotation are identified by an equivalence relationship. The use of a finite dimensional matrix Lie group leads to a similarity metric with an explicit geodesic solution. Subsequently, we discuss some of the properties of the metric and its relationship with a deformation by least action. Furthermore, invariance to reparametrization or estimation of point correspondence between shapes is formulated as an estimation of sampling function. Thereafter, two possible approaches are presented to solve the point correspondence estimation problem. Finally, we propose an adaptation of k-means clustering for shape analysis in the proposed representation space. Experimental results show that the proposed representation is robust to uninformative cues, e.g., local shape perturbation and displacement. In comparison to state of the art methods, it achieves a high precision on the Swedish and the Flavia leaf datasets and a comparable result on MPEG-7, Kimia99 and Kimia216 datasets.

9.
IEEE Trans Pattern Anal Mach Intell ; 39(10): 2045-2059, 2017 10.
Article in English | MEDLINE | ID: mdl-27810799

ABSTRACT

We propose a novel approach for enhancing depth videos containing non-rigidly deforming objects. Depth sensors are capable of capturing depth maps in real-time but suffer from high noise levels and low spatial resolutions. While solutions for reconstructing 3D details in static scenes, or scenes with rigid global motions have been recently proposed, handling unconstrained non-rigid deformations in relative complex scenes remains a challenge. Our solution consists in a recursive dynamic multi-frame super-resolution algorithm where the relative local 3D motions between consecutive frames are directly accounted for. We rely on the assumption that these 3D motions can be decoupled into lateral motions and radial displacements. This allows to perform a simple local per-pixel tracking where both depth measurements and deformations are dynamically optimized. The geometric smoothness is subsequently added using a multi-level L1 minimization with a bilateral total variation regularization. The performance of this method is thoroughly evaluated on both real and synthetic data. As compared to alternative approaches, the results show a clear improvement in reconstruction accuracy and in robustness to noise, to relative large non-rigid deformations, and to topological changes. Moreover, the proposed approach, implemented on a CPU, is shown to be computationally efficient and working in real-time.

SELECTION OF CITATIONS
SEARCH DETAIL
...