Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 2018 Aug 26.
Article in English | MEDLINE | ID: mdl-30146755

ABSTRACT

AIMS: The effect of insect exclusion via netting on bacterial microbiota associated with field-grown tomato fruit and flowers was evaluated. METHODS AND RESULTS: Amplicon-based bacterial community profiling from insect-exposed plants and plants wrapped in nylon mosquito netting was conducted on total DNA extracted from tomato flower and mature unripe fruit washes. The V1-V3 region of the 16S rRNA gene was sequenced using Illumina MiSeq and analysed using qiime ver. 1.8. The carposphere supported significantly more phylogenetic diversity (PD) compared to the anthosphere, as measured by operational taxonomic unit richness (P = 0·001) and Faith's PD (P = 0·004). Flowers and fruit hosted distinct bacterial community structures (R2 = 0·27, P = 0·001), with specific taxonomic differences in taxa that included the Xanthomonadaceae (higher in flowers), and the Pseudomonadaceae, Methylobacteriaceae and Rhizobiales (higher in fruit) (FDR-P < 0·05). Bacterial community profiles of netted plants were overall statistically similar to non-netted plants for both flowers and fruit (P > 0·10). However, less variation between samples was observed among flowers (~50% less, P = 0·004) and green fruit (~10% less, P = 0·038) collected from netted than non-netted plants. CONCLUSION: Insects may introduce or augment variability in bacterial diversity associated with tomato flowers and potentially green fruit surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to knowledge on microbiome dynamics of the tomato holobiont. Deciphering drivers of bacterial diversity and community structure of fruit crops could reveal processes important to agricultural management, such as competitive exclusion of pathogens and priming of plant defense mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...