Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10442, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714739

ABSTRACT

Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.


Subject(s)
Exons , Muscular Atrophy, Spinal , Proteome , RNA, Circular , Survival of Motor Neuron 1 Protein , Survival of Motor Neuron 2 Protein , Transcriptome , Humans , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Proteome/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , HEK293 Cells , Exons/genetics , Gene Expression Regulation
2.
Neurosci Insights ; 19: 26331055241233596, 2024.
Article in English | MEDLINE | ID: mdl-38379891

ABSTRACT

Spinal muscular atrophy (SMA) is treated by increasing the level of Survival Motor Neuron (SMN) protein through correction of SMN2 exon 7 skipping or exogenous expression of SMN through gene therapy. Currently available therapies have multiple shortcomings, including poor body-wide distribution, invasive delivery, and potential negative consequences due to high doses needed for clinical efficacy. Here we test the effects of a combination treatment of a splice-correcting antisense oligonucleotide (ASO) Anti-N1 with the small compounds risdiplam and branaplam. We show that a low-dose treatment of Anti-N1 with either compound produces a synergistic effect on the inclusion of SMN2 exon 7 in SMA patient fibroblasts. Using RNA-Seq, we characterize the transcriptomes of cells treated with each compound as well as in combination. Although high doses of each individual treatment trigger widespread perturbations of the transcriptome, combination treatment of Anti-N1 with risdiplam and branaplam results in minimal disruption of gene expression. For individual genes targeted by the 3 compounds, we observe little to no additive effects of combination treatment. Overall, we conclude that the combination treatment of a splice-correcting ASO with small compounds represents a promising strategy for achieving a high level of SMN expression while minimizing the risk of off-target effects.

3.
Nucleic Acids Res ; 52(7): 3547-3571, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38214229

ABSTRACT

Here we report a Survival Motor Neuron 2 (SMN2) super minigene, SMN2Sup, encompassing its own promoter, all exons, their flanking intronic sequences and the entire 3'-untranslated region. We confirm that the pre-mRNA generated from SMN2Sup undergoes splicing to produce a translation-competent mRNA. We demonstrate that mRNA generated from SMN2Sup produces more SMN than an identical mRNA generated from a cDNA clone. We uncover that overexpression of SMN triggers skipping of exon 3 of SMN1/SMN2. We define the minimal promoter and regulatory elements associated with the initiation and elongation of transcription of SMN2. The shortened introns within SMN2Sup preserved the ability of camptothecin, a transcription elongation inhibitor, to induce skipping of exons 3 and 7 of SMN2. We show that intron 1-retained transcripts undergo nonsense-mediated decay. We demonstrate that splicing factor SRSF3 and DNA/RNA helicase DHX9 regulate splicing of multiple exons in the context of both SMN2Sup and endogenous SMN1/SMN2. Prevention of SMN2 exon 7 skipping has implications for the treatment of spinal muscular atrophy (SMA). We validate the utility of the super minigene in monitoring SMN levels upon splicing correction. Finally, we demonstrate how the super minigene could be employed to capture the cell type-specific effects of a pathogenic SMN1 mutation.


Subject(s)
Exons , Introns , Promoter Regions, Genetic , Survival of Motor Neuron 1 Protein , Survival of Motor Neuron 2 Protein , Transcription, Genetic , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Introns/genetics , Humans , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , RNA Splicing , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Nonsense Mediated mRNA Decay , RNA, Messenger/genetics , RNA, Messenger/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics
4.
Nucleic Acids Res ; 51(12): 5948-5980, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37026480

ABSTRACT

Designing an RNA-interacting molecule that displays high therapeutic efficacy while retaining specificity within a broad concentration range remains a challenging task. Risdiplam is an FDA-approved small molecule for the treatment of spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. Branaplam is another small molecule which has undergone clinical trials. The therapeutic merit of both compounds is based on their ability to restore body-wide inclusion of Survival Motor Neuron 2 (SMN2) exon 7 upon oral administration. Here we compare the transcriptome-wide off-target effects of these compounds in SMA patient cells. We captured concentration-dependent compound-specific changes, including aberrant expression of genes associated with DNA replication, cell cycle, RNA metabolism, cell signaling and metabolic pathways. Both compounds triggered massive perturbations of splicing events, inducing off-target exon inclusion, exon skipping, intron retention, intron removal and alternative splice site usage. Our results of minigenes expressed in HeLa cells provide mechanistic insights into how these molecules targeted towards a single gene produce different off-target effects. We show the advantages of combined treatments with low doses of risdiplam and branaplam. Our findings are instructive for devising better dosing regimens as well as for developing the next generation of small molecule therapeutics aimed at splicing modulation.


Subject(s)
Muscular Atrophy, Spinal , RNA Splicing , Humans , HeLa Cells , Motor Neurons/metabolism , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/metabolism , RNA Splicing/drug effects , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Neuromuscular Agents/administration & dosage , Molecular Targeted Therapy
5.
Neurosci Insights ; 15: 2633105520973985, 2020.
Article in English | MEDLINE | ID: mdl-33283185

ABSTRACT

Spinal muscular atrophy (SMA) is 1 of the leading causes of infant mortality. SMA is mostly caused by low levels of Survival Motor Neuron (SMN) protein due to deletion of or mutation in the SMN1 gene. Its nearly identical copy, SMN2, fails to compensate for the loss of SMN1 due to predominant skipping of exon 7. Correction of SMN2 exon 7 splicing by an antisense oligonucleotide (ASO), nusinersen (Spinraza™), that targets the intronic splicing silencer N1 (ISS-N1) became the first approved therapy for SMA. Restoration of SMN levels using gene therapy was the next. Very recently, an orally deliverable small molecule, risdiplam (Evrysdi™), became the third approved therapy for SMA. Here we discuss how these therapies are positioned to meet the needs of the broad phenotypic spectrum of SMA patients.

6.
Cell Signal ; 73: 109696, 2020 09.
Article in English | MEDLINE | ID: mdl-32553550

ABSTRACT

Circular RNAs (circRNAs) belong to a diverse class of stable RNAs expressed in all cell types. Their proposed functions include sponging of microRNAs (miRNAs), sequestration and trafficking of proteins, assembly of multimeric complexes, production of peptides, and regulation of transcription. Backsplicing due to RNA structures formed by an exceptionally high number of Alu repeats lead to the production of a vast repertoire of circRNAs by human Survival Motor Neuron genes, SMN1 and SMN2, that code for SMN, an essential multifunctional protein. Low levels of SMN due to deletion or mutation of SMN1 result in spinal muscular atrophy (SMA), a major genetic disease of infants and children. Mild SMA is also recorded in adult population, expanding the spectrum of the disease. Here we review SMN circRNAs with respect to their biogenesis, sequence features, and potential functions. We also discuss how SMN circRNAs could be exploited for diagnostic and therapeutic purposes.


Subject(s)
Motor Neurons/metabolism , Muscular Atrophy, Spinal/metabolism , RNA, Circular/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Humans , Motor Neurons/cytology , Motor Neurons/pathology , Survival of Motor Neuron 2 Protein/metabolism
7.
Biochim Biophys Acta Gene Regul Mech ; 1863(8): 194562, 2020 08.
Article in English | MEDLINE | ID: mdl-32387331

ABSTRACT

Human Survival Motor Neuron (SMN) genes code for SMN, an essential multifunctional protein. Complete loss of SMN is embryonic lethal, while low levels of SMN lead to spinal muscular atrophy (SMA), a major genetic disease of children and infants. Reduced levels of SMN are associated with the abnormal development of heart, lung, muscle, gastro-intestinal system and testis. The SMN loci have been shown to generate a vast repertoire of transcripts, including linear, back- and trans-spliced RNAs as well as antisense long noncoding RNAs. However, functions of the majority of these transcripts remain unknown. Here we review the nature of RNAs generated from the SMN loci and discuss their potential functions in cellular metabolism.


Subject(s)
Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , SMN Complex Proteins/genetics , SMN Complex Proteins/metabolism , Alu Elements , Animals , Humans , MicroRNAs , RNA, Circular , RNA, Long Noncoding/metabolism
8.
Nucleic Acids Res ; 47(6): 2884-2905, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30698797

ABSTRACT

Circular RNAs (circRNAs) perform diverse functions, including the regulation of transcription, translation, peptide synthesis, macromolecular sequestration and trafficking. Inverted Alu repeats capable of forming RNA:RNA duplexes that bring splice sites together for backsplicing are known to facilitate circRNA generation. However, higher limits of circRNAs produced by a single Alu-rich gene are currently not predictable due to limitations of amplification and analyses. Here, using a tailored approach, we report a surprising diversity of exon-containing circRNAs generated by the Alu-rich Survival Motor Neuron (SMN) genes that code for SMN, an essential multifunctional protein in humans. We show that expression of the vast repertoire of SMN circRNAs is universal. Several of the identified circRNAs harbor novel exons derived from both intronic and intergenic sequences. A comparison with mouse Smn circRNAs underscored a clear impact of primate-specific Alu elements on shaping the overall repertoire of human SMN circRNAs. We show the role of DHX9, an RNA helicase, in splicing regulation of several SMN exons that are preferentially incorporated into circRNAs. Our results suggest self- and cross-regulation of biogenesis of various SMN circRNAs. These findings bring a novel perspective towards a better understanding of SMN gene function.


Subject(s)
Alternative Splicing/physiology , RNA/genetics , SMN Complex Proteins/genetics , 5' Flanking Region , Alu Elements/genetics , Cells, Cultured , Computational Biology , Exons , HEK293 Cells , HeLa Cells , Humans , RNA, Circular , RNA, Messenger , SMN Complex Proteins/physiology
9.
Nucleic Acids Res ; 46(20): 10983-11001, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30165668

ABSTRACT

The Survival Motor Neuron (SMN) protein is essential for survival of all animal cells. SMN harbors a nucleic acid-binding domain and plays an important role in RNA metabolism. However, the RNA-binding property of SMN is poorly understood. Here we employ iterative in vitro selection and chemical structure probing to identify sequence and structural motif(s) critical for RNA-SMN interactions. Our results reveal that motifs that drive RNA-SMN interactions are diverse and suggest that tight RNA-SMN interaction requires presence of multiple contact sites on the RNA molecule. We performed UV crosslinking and immunoprecipitation coupled with high-throughput sequencing (HITS-CLIP) to identify cellular RNA targets of SMN in neuronal SH-SY5Y cells. Results of HITS-CLIP identified a wide variety of targets, including mRNAs coding for ribosome biogenesis and cytoskeleton dynamics. We show critical determinants of ANXA2 mRNA for a direct SMN interaction in vitro. Our data confirms the ability of SMN to discriminate among close RNA sequences, and represent the first validation of a direct interaction of SMN with a cellular RNA target. Our findings suggest direct RNA-SMN interaction as a novel mechanism to initiate the cascade of events leading to the execution of SMN-specific functions.


Subject(s)
Nucleotide Motifs , Protein Domains , RNA/chemistry , Survival of Motor Neuron 1 Protein/chemistry , Animals , Base Sequence , Binding Sites/genetics , Binding, Competitive , Cell Line, Tumor , Humans , Neurons/metabolism , Protein Binding , RNA/genetics , RNA/metabolism , Sequence Homology, Nucleic Acid , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/chemistry , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
10.
Front Microbiol ; 8: 2252, 2017.
Article in English | MEDLINE | ID: mdl-29187847

ABSTRACT

Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Mutations or deletions of SMN1, which codes for SMN, cause spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. Aberrant expression or localization of SMN has been also implicated in other pathological conditions, including male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. SMN2 fails to compensate for the loss of SMN1 due to skipping of exon 7, leading to the production of SMNΔ7, an unstable protein. In addition, SMNΔ7 is less functional due to the lack of a critical C-terminus of the full-length SMN, a multifunctional protein. Alu elements are specific to primates and are generally found within protein coding genes. About 41% of the human SMN gene including promoter region is occupied by more than 60 Alu-like sequences. Here we discuss how such an abundance of Alu-like sequences may contribute toward SMA pathogenesis. We describe the likely impact of Alu elements on expression of SMN. We have recently identified a novel exon 6B, created by exonization of an Alu-element located within SMN intron 6. Irrespective of the exon 7 inclusion or skipping, transcripts harboring exon 6B code for the same SMN6B protein that has altered C-terminus compared to the full-length SMN. We have demonstrated that SMN6B is more stable than SMNΔ7 and likely functions similarly to the full-length SMN. We discuss the possible mechanism(s) of regulation of SMN exon 6B splicing and potential consequences of the generation of exon 6B-containing transcripts.

11.
Nucleic Acids Res ; 45(21): 12214-12240, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28981879

ABSTRACT

Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.


Subject(s)
Mutation , RNA Splice Sites , Regulatory Sequences, Ribonucleic Acid , Survival of Motor Neuron 1 Protein/genetics , Animals , Cell Line, Tumor , Cells, Cultured , Exons , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors , Humans , Introns , Mice , Muscular Atrophy, Spinal/genetics , RNA Splicing , RNA, Messenger/metabolism , RNA, Small Nuclear/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Survival of Motor Neuron 1 Protein/biosynthesis
12.
Sci Rep ; 7(1): 7183, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28775379

ABSTRACT

Spinal muscular atrophy (SMA) is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. The nearly identical SMN2 cannot compensate for SMN1 loss due to exon 7 skipping. The allele C (C +/+) mouse recapitulates a mild SMA-like phenotype and offers an ideal system to monitor the role of disease-modifying factors over a long time. T-cell-restricted intracellular antigen 1 (TIA1) regulates SMN exon 7 splicing. TIA1 is reported to be downregulated in obese patients, although it is not known if the effect is gender-specific. We show that female Tia1-knockout (Tia1 -/-) mice gain significant body weight (BW) during early postnatal development. We next examined the effect of Tia1 deletion in novel C +/+/Tia1 -/- mice. Underscoring the opposing effects of Tia1 deletion and low SMN level on BW gain, both C +/+ and C +/+/Tia1 -/- females showed similar BW gain trajectory at all time points during our study. We observed early tail necrosis in C +/+/Tia1 -/- females but not in males. We show enhanced impairment of male reproductive organ development and exacerbation of the C +/+/Tia1 -/- testis transcriptome. Our findings implicate a protein factor as a gender-specific modifier of a mild mouse model of SMA.


Subject(s)
Genes, Modifier , Muscular Atrophy, Spinal/genetics , T-Cell Intracellular Antigen-1/genetics , Alleles , Animals , Biomarkers , Disease Models, Animal , Disease Progression , Female , Gene Expression Profiling , Genotype , Male , Mice , Mice, Knockout , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/physiopathology , Necrosis/genetics , Necrosis/pathology , Organogenesis/genetics , Phenotype , Severity of Illness Index , Sex Factors , Testis/embryology , Testis/metabolism , Testis/pathology , Transcriptome
13.
Transl Neurosci ; 8: 1-6, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28400976

ABSTRACT

Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza™ (synonyms: Nusinersen, IONIS-SMNRX, ISIS-SMNRX), an antisense drug based on ISS-N1 target. Spinraza™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols.

14.
Mol Ther ; 25(6): 1328-1341, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28412171

ABSTRACT

Spinal muscular atrophy (SMA), the leading genetic disease of children, is caused by low levels of survival motor neuron (SMN) protein. Here, we employ A15/283, an antisense oligonucleotide targeting a deep intronic sequence/structure, to examine the impact of restoration of SMN in a mild SMA mouse model. We show gender-specific amelioration of tail necrosis upon subcutaneous administrations of A15/283 into SMA mice at postnatal days 1 and 3. We also demonstrate that a modest increase in SMN due to early administrations of A15/283 dramatically improves testicular development and spermatogenesis. Our results reveal near total correction of expression of several genes in adult testis upon temporary increase in SMN during early postnatal development. This is the first demonstration of in vivo efficacy of an antisense oligonucleotide targeting a deep intronic sequence/structure. This is also the first report of gender-specific amelioration of SMA pathology upon a modest peripheral increase of SMN.


Subject(s)
Introns , Muscular Atrophy, Spinal/genetics , Oligonucleotides, Antisense , Phenotype , Animals , Apoptosis/genetics , Disease Models, Animal , Female , Gene Dosage , Gene Expression , Gene Targeting , Male , Mice , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/therapy , Mutation , Necrosis/genetics , Necrosis/pathology , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/chemistry , Sex Factors , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Tail/pathology , Testis/metabolism
15.
Biochim Biophys Acta Gene Regul Mech ; 1860(3): 299-315, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28095296

ABSTRACT

The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.


Subject(s)
Gene Expression Regulation , Survival of Motor Neuron 1 Protein/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Coiled Bodies/genetics , Coiled Bodies/metabolism , Cytoskeleton/genetics , Cytoskeleton/metabolism , Female , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/metabolism , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/metabolism , Survival of Motor Neuron 1 Protein/genetics
16.
Sci Rep ; 6: 30778, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27481219

ABSTRACT

Spinal muscular atrophy (SMA), a leading genetic disease of children and infants, is caused by mutations or deletions of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to skipping of exon 7. SMN2 predominantly produces SMNΔ7, an unstable protein. Here we report exon 6B, a novel exon, generated by exonization of an intronic Alu-like sequence of SMN. We validate the expression of exon 6B-containing transcripts SMN6B and SMN6BΔ7 in human tissues and cell lines. We confirm generation of SMN6B transcripts from both SMN1 and SMN2. We detect expression of SMN6B protein using antibodies raised against a unique polypeptide encoded by exon 6B. We analyze RNA-Seq data to show that hnRNP C is a potential regulator of SMN6B expression and demonstrate that SMN6B is a substrate of nonsense-mediated decay. We show interaction of SMN6B with Gemin2, a critical SMN-interacting protein. We demonstrate that SMN6B is more stable than SMNΔ7 and localizes to both the nucleus and the cytoplasm. Our finding expands the diversity of transcripts generated from human SMN genes and reveals a novel protein isoform predicted to be stably expressed during conditions of stress.


Subject(s)
Sequence Analysis, RNA/methods , Survival of Motor Neuron 1 Protein/chemistry , Survival of Motor Neuron 1 Protein/genetics , Alternative Splicing , Animals , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Exons , HeLa Cells , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Humans , Mice , Models, Molecular , Nerve Tissue Proteins/metabolism , Nonsense Mediated mRNA Decay , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Stability , RNA-Binding Proteins/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/chemistry , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
17.
PLoS One ; 11(4): e0154390, 2016.
Article in English | MEDLINE | ID: mdl-27111068

ABSTRACT

Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 leads to spinal muscular atrophy (SMA), the most frequent genetic cause of infant mortality. While SMN2 cannot compensate for the loss of SMN1 due to predominant skipping of exon 7, correction of SMN2 exon 7 splicing holds the promise of a cure for SMA. Previously, we used cell-based models coupled with a multi-exon-skipping detection assay (MESDA) to demonstrate the vulnerability of SMN2 exons to aberrant splicing under the conditions of oxidative stress (OS). Here we employ a transgenic mouse model and MESDA to examine the OS-induced splicing regulation of SMN2 exons. We induced OS using paraquat that is known to trigger production of reactive oxygen species and cause mitochondrial dysfunction. We show an overwhelming co-skipping of SMN2 exon 5 and exon 7 under OS in all tissues except testis. We also show that OS increases skipping of SMN2 exon 3 in all tissues except testis. We uncover several new SMN2 splice isoforms expressed at elevated levels under the conditions of OS. We analyze cis-elements and transacting factors to demonstrate the diversity of mechanisms for splicing misregulation under OS. Our results of proteome analysis reveal downregulation of hnRNP H as one of the potential consequences of OS in brain. Our findings suggest SMN2 as a sensor of OS with implications to SMA and other diseases impacted by low levels of SMN protein.


Subject(s)
Alternative Splicing , Exons , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics , Animals , Base Sequence , Biological Assay , Disease Models, Animal , Gene Expression , Humans , Introns , Mice , Mice, Transgenic , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Nucleic Acid Conformation , Oxidative Stress , Paraquat/pharmacology , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/metabolism , Transgenes
18.
Sci Rep ; 6: 20193, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26830971

ABSTRACT

Spinal muscular atrophy (SMA) is caused by low levels of survival motor neuron (SMN), a multifunctional protein essential for higher eukaryotes. While SMN is one of the most scrutinized proteins associated with neurodegeneration, its gender-specific role in vertebrates remains unknown. We utilized a mild SMA model (C/C model) to examine the impact of low SMN on growth and development of mammalian sex organs. We show impaired testis development, degenerated seminiferous tubules, reduced sperm count and low fertility in C/C males, but no overt sex organ phenotype in C/C females. Underscoring an increased requirement for SMN expression, wild type testis showed extremely high levels of SMN protein compared to other tissues. Our results revealed severe perturbations in pathways critical to C/C male reproductive organ development and function, including steroid biosynthesis, apoptosis, and spermatogenesis. Consistent with enhanced apoptosis in seminiferous tubules of C/C testes, we recorded a drastic increase in cells with DNA fragmentation. SMN was expressed at high levels in adult C/C testis due to an adult-specific splicing switch, but could not compensate for low levels during early testicular development. Our findings uncover novel hallmarks of SMA disease progression and link SMN to general male infertility.


Subject(s)
Muscular Atrophy, Spinal/complications , Survival of Motor Neuron 2 Protein/metabolism , Testis/abnormalities , Testis/growth & development , Alternative Splicing/genetics , Animals , Apoptosis/genetics , Disease Models, Animal , Female , Gene Expression Regulation, Developmental , Infertility, Male , Male , Mice , Muscular Atrophy, Spinal/genetics , Organ Size , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Sexual Maturation/genetics , Spermatogenesis/genetics , Survival of Motor Neuron 2 Protein/genetics , Testis/pathology , Transcriptome/genetics
19.
Methods Mol Biol ; 1126: 271-83, 2014.
Article in English | MEDLINE | ID: mdl-24549671

ABSTRACT

The dynamic process of pre-mRNA splicing is regulated by combinatorial control exerted by overlapping cis-elements that are unique to every exon and its flanking intronic sequences. Splicing cis-elements are usually 4-8-nucleotide-long linear motifs that furnish interaction sites for specific proteins. Secondary and higher-order RNA structures exert an additional layer of control by providing accessibility to cis-elements. Antisense oligonucleotides (ASOs) that block splicing cis-elements and/or affect RNA structure have been shown to modulate alternative splicing in vivo. Consistently, ASO-based strategies have emerged as a powerful tool for therapeutic manipulation of aberrant splicing in pathological conditions. Here we describe the application of an ASO-based approach for the enhanced production of the full-length mRNA of SMN2 in spinal muscular atrophy patient cells.


Subject(s)
Molecular Biology/methods , Muscular Atrophy, Spinal/genetics , RNA Precursors/genetics , Humans , Introns , Muscular Atrophy, Spinal/pathology , Oligoribonucleotides, Antisense/genetics , RNA Precursors/ultrastructure , RNA Splicing/genetics , Survival of Motor Neuron 2 Protein/genetics
20.
Nucleic Acids Res ; 41(17): 8144-65, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23861442

ABSTRACT

Here, we report a long-distance interaction (LDI) as a critical regulator of alternative splicing of Survival Motor Neuron 2 (SMN2) exon 7, skipping of which is linked to spinal muscular atrophy (SMA), a leading genetic disease of children and infants. We show that this LDI is linked to a unique intra-intronic structure that we term internal stem through LDI-1 (ISTL1). We used site-specific mutations and Selective 2'-Hydroxyl Acylation analyzed by Primer Extension to confirm the formation and functional significance of ISTL1. We demonstrate that the inhibitory effect of ISTL1 is independent of hnRNP A1/A2B1 and PTB1 previously implicated in SMN2 exon 7 splicing. We show that an antisense oligonucleotide-mediated sequestration of the 3' strand of ISTL1 fully corrects SMN2 exon 7 splicing and restores high levels of SMN and Gemin2, a SMN-interacting protein, in SMA patient cells. Our results also reveal that the 3' strand of ISTL1 and upstream sequences constitute an inhibitory region that we term intronic splicing silencer N2 (ISS-N2). This is the first report to demonstrate a critical role of a structure-associated LDI in splicing regulation of an essential gene linked to a genetic disease. Our findings expand the repertoire of potential targets for an antisense oligonucleotide-mediated therapy of SMA.


Subject(s)
Alternative Splicing , Introns , Muscular Atrophy, Spinal/genetics , Regulatory Sequences, Ribonucleic Acid , Base Sequence , Exons , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Humans , Molecular Sequence Data , Muscular Atrophy, Spinal/therapy , Nucleic Acid Conformation , Polypyrimidine Tract-Binding Protein/metabolism , RNA/chemistry , Survival of Motor Neuron 2 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...