Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(5): e10037, 2023 May.
Article in English | MEDLINE | ID: mdl-37153020

ABSTRACT

Landscape genetics is increasingly transitioning away from microsatellites, with single nucleotide polymorphisms (SNPs) providing increased resolution for detecting patterns of spatial-genetic structure. This is particularly pertinent for research in arid-zone mammals due to challenges associated with unique life history traits, such as boom-bust population dynamics and long-distance dispersal capacities. Here, we provide a case study comparing SNPs versus microsatellites for testing three explicit landscape genetic hypotheses (isolation-by-distance, isolation-by-barrier, and isolation-by-resistance) in a suite of small, arid-zone mammals in the Pilbara region of Western Australia. Using clustering algorithms, Mantel tests, and linear mixed effects models, we compare functional connectivity between genetic marker types and across species, including one marsupial, Ningaui timealeyi, and two native rodents, Pseudomys chapmani and P. hermannsburgensis. SNPs resolved subtle genetic structuring not detected by microsatellites, particularly for N. timealeyi where two genetic clusters were identified. Furthermore, stronger signatures of isolation-by-distance and isolation-by-resistance were detected when using SNPs, and model selection based on SNPs tended to identify more complex resistance surfaces (i.e., composite surfaces of multiple environmental layers) in the best-performing models. While we found limited evidence for physical barriers to dispersal across the Pilbara for all species, we found that topography, substrate, and soil moisture were the main environmental drivers shaping functional connectivity. Our study demonstrates that new analytical and genetic tools can provide novel ecological insights into arid landscapes, with potential application to conservation management through identifying dispersal corridors to mediate the impacts of ongoing habitat fragmentation in the region.

2.
Conserv Biol ; 37(1): e13989, 2023 02.
Article in English | MEDLINE | ID: mdl-35979681

ABSTRACT

Landscape-scale conservation that considers metapopulation dynamics will be essential for preventing declines of species facing multiple threats to their survival. Toward this end, we developed a novel approach that combines occurrence records, spatial-environmental data, and genetic information to model habitat, connectivity, and patterns of genetic structure and link spatial attributes to underlying ecological mechanisms. Using the threatened northern quoll (Dasyurus hallucatus) as a case study, we applied this approach to address the need for conservation decision-making tools that promote resilient metapopulations of this threatened species in the Pilbara, Western Australia, a multiuse landscape that is a hotspot for biodiversity and mining. Habitat and connectivity were predicted by different landscape characteristics. Whereas habitat suitability was overwhelmingly driven by terrain ruggedness, dispersal was facilitated by proximity to watercourses. Although there is limited evidence for major physical barriers in the Pilbara, areas with high silt and clay content (i.e., alluvial and hardpan plains) showed high resistance to dispersal. Climate subtlety shaped distributions and patterns of genetic turnover, suggesting the potential for local adaptation. By understanding these spatial-environmental associations and linking them to life-history and metapopulation dynamics, we highlight opportunities to provide targeted species management. To support this, we have created habitat, connectivity, and genetic uniqueness maps for conservation decision-making in the region. These tools have the potential to provide a more holistic approach to conservation in multiuse landscapes globally.


La conservación a nivel del paisaje que incluye las dinámicas metapoblacionales será esencial para prevenir la declinación de especies con múltiples amenazas a su supervivencia. Enfocados en este fin, desarrollamos una estrategia novedosa que combina los registros presenciales, datos espacio-ambientales e información genética para modelar la conectividad de hábitat y los patrones de estructura genética y conectar los atributos espaciales con los mecanismos ecológicos subyacentes. Usamos al cuol del norte (Dasyurus hallucatus) como estudio de caso para aplicar esta estrategia y abordar la necesidad de herramientas de decisión en la conservación que promuevan metapoblaciones resilientes de esta especie en la Pilbara de Australia Occidental, un paisaje multiusos que es un punto caliente para la biodiversidad y la minería. Diferentes características del paisaje pronosticaron la conectividad y el hábitat. Mientras que la escabrosidad del terreno causó enormemente la idoneidad del hábitat, la dispersión estuvo propiciada por la proximidad a los cauces. Aunque hay evidencias limitadas de barreras físicas importantes en la Pilbara, las áreas con un contenido elevado de limo y arcilla (es decir, planicies aluviales y de alio) mostraron una gran resistencia a la dispersión. La matización climática determinó la distribución y los patrones del recambio genético, lo que sugiere un potencial para la adaptación local. Si entendemos estas asociaciones espacio-ambientales y las conectamos con las dinámicas metapoblacionales y de historia de vida, podemos resaltar las oportunidades para proporcionar un manejo focalizado de la especie. Para respaldar esto hemos creado mapas de hábitat, conectividad y singularidad genética para las decisiones de conservación en la región. Estas herramientas tienen el potencial de proporcionar una estrategia más holística para la conservación en los paisajes multiusos de todo el mundo.


Subject(s)
Conservation of Natural Resources , Endangered Species , Animals , Ecosystem , Biodiversity , Climate
3.
J Evol Biol ; 32(10): 1014-1026, 2019 10.
Article in English | MEDLINE | ID: mdl-31211909

ABSTRACT

Landscape topography and the mobility of individuals will have fundamental impacts on a species' population structure, for example by enhancing or reducing gene flow and therefore influencing the effective size and genetic diversity of the population. However, social organization will also influence population genetic structure. For example, species that live and breed in cooperative groups may experience high levels of inbreeding and strong genetic drift. The western pebble-mound mouse (Pseudomys chapmani), which occupies a highly heterogeneous, semi-arid landscape in Australia, is an enigmatic social mammal that has the intriguing behaviour of working cooperatively in groups to build permanent pebble mounds above a subterranean burrow system. Here, we used both nuclear (microsatellite) and mitochondrial (mtDNA) markers to analyse the range-wide population structure of western pebble-mound mice sourced from multiple social groups. We observed high levels of genetic diversity at the broad scale, very weak genetic differentiation at a finer scale and low levels of inbreeding. Our genetic analyses suggest that the western pebble-mound mouse population is both panmictic and highly viable. We conclude that high genetic connectivity across the complex landscape is a consequence of the species' ability to permeate their environment, which may be enhanced by "boom-bust" population dynamics driven by the semi-arid climate. More broadly, our results highlight the importance of sampling strategies to infer social structure and demonstrate that sociality is an important component of population genetic structure.


Subject(s)
Ecosystem , Muridae/genetics , Social Behavior , Animals , Australia , DNA, Mitochondrial , Genetic Variation , Genotype , Microsatellite Repeats
4.
PLoS One ; 13(2): e0191190, 2018.
Article in English | MEDLINE | ID: mdl-29444118

ABSTRACT

The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare.


Subject(s)
Demography/methods , Marsupialia/classification , Marsupialia/genetics , Animals , Australia , Cities , Conservation of Natural Resources/methods , Ecosystem , Mammals , Models, Biological , Population Dynamics , Population Forecast , Urban Renewal , Urbanization
5.
Mol Ecol ; 21(24): 5955-68, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23078354

ABSTRACT

Few studies have documented the impacts of habitat fragmentation on plant mating patterns together with fitness. Yet, these processes require urgent attention to better understand the impact of contemporary landscape change on biodiversity and for guiding native plant genetic resource management. We examined these relationships using the predominantly insect-pollinated Eucalyptus socialis. Progeny were collected from trees located in three increasingly disturbed landscapes in southern Australia and were planted out in common garden experiments. We show that individual mating patterns were increasingly impacted by lower conspecific density caused by habitat fragmentation. We determined that reduced pollen diversity probably has effects over and above those of inbreeding on progeny fitness. This provides an alternative mechanistic explanation for the indirect density dependence often inferred between conspecific density and offspring fitness.


Subject(s)
Ecosystem , Eucalyptus/genetics , Genetic Fitness , Genetic Variation , Pollen/genetics , Genotyping Techniques , Inbreeding , Microsatellite Repeats , Models, Genetic , South Australia
6.
Ecol Lett ; 15(5): 444-52, 2012 May.
Article in English | MEDLINE | ID: mdl-22381041

ABSTRACT

The influence of habitat fragmentation on mating patterns and progeny fitness in trees is critical for understanding the long-term impact of contemporary landscape change on the sustainability of biodiversity. We examined the relationship between mating patterns, using microsatellites, and fitness of progeny, in a common garden trial, for the insect-pollinated big-leaf mahogany, Swietenia macrophylla King, sourced from forests and isolated trees in 16 populations across Central America. As expected, isolated trees had disrupted mating patterns and reduced fitness. However, for dry provenances, fitness was negatively related to correlated paternity, while for mesic provenances, fitness was correlated positively with outcrossing rate and negatively with correlated paternity. Poorer performance of mesic provenances is likely because of reduced effective pollen donor density due to poorer environmental suitability and greater disturbance history. Our results demonstrate a differential shift in reproductive assurance and inbreeding costs in mahogany, driven by exploitation history and contemporary landscape context.


Subject(s)
Ecosystem , Inbreeding , Rosaceae/physiology , Central America , Genetic Variation , Heterozygote , Microsatellite Repeats , Rosaceae/genetics , Rosaceae/growth & development
7.
Ann Bot ; 108(1): 185-95, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21546431

ABSTRACT

BACKGROUND AND AIMS: Plants show patterns of spatial genetic differentiation reflecting gene flow mediated by pollen and seed dispersal and genotype × environment interactions. If patterns of genetic structure are determined largely by gene flow then they may be useful in predicting the likelihood of inbreeding or outbreeding depression but should be less useful if there is strong site-specific selection. For many Australian plants little is known about either their population genetics or the effects on mating systems of variation in pollen transfer distances. Experimental pollinations were used to compare the reproductive success of bird-adapted Grevillea mucronulata plants mated with individuals from a range of spatial scales. A hierarchical survey of microsatellite DNA variation was also conducted to describe the scale of population differentiation for neutral markers. METHODS: The effects of four pollen treatments on reproductive performance were compared. These treatments were characterized by transfer of pollen from (a) neighbouring adults; (b) an adjacent cluster of adults (30-50 m distant); (c) a distant cluster (>5 km distant); and (d) open pollination. Sets of 17·9 ± 3·3 leaves from each of 15 clusters of plants were genotyped and spatial autocorrelation and F statistics were used to describe patterns of genetic structure. KEY RESULTS: Grevillea mucronulata displayed evidence of both inbreeding and outbreeding depression, with 'intermediate' pollen producing consistently superior outcomes for most aspects of fitness including seed set, seed size, germination and seedling growth. Significant genotypic structuring was detected within clusters (spatial autocorrelation) and among adjacent clusters and clusters separated by >5 km distance (F(ST) = 0·07 and 0·10). CONCLUSIONS: The superior outcome of intermediate pollen transfer and genetic differentiation of adjacent clusters suggests that G. mucronulata selection disfavours matings among closely and distantly related neighbours. Moreover, the performance of open-pollinated seedlings was poor, implying that current mating patterns are suboptimal.


Subject(s)
Genetic Fitness/physiology , Genetic Variation , Pollen/physiology , Proteaceae/physiology , Seed Dispersal/physiology , Seeds/physiology , Animals , Australia , Birds/physiology , Breeding , DNA, Plant/genetics , Environment , Gene Flow , Genetics, Population , Genotype , Germination/genetics , Linkage Disequilibrium , Microsatellite Repeats/genetics , Pollen/genetics , Pollination , Proteaceae/genetics , Reproduction , Seedlings/genetics , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...