Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Bone Oncol ; 46: 100608, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800348

ABSTRACT

Interleukin-1B (IL-1B) is a potent pro-inflammatory cytokine that plays multiple, pivotal roles, in the complex interplay between breast cancer cells and the bone microenvironment. IL-1B is involved in the growth of the primary tumours, regulation of inflammation within the tumour microenvironment, promotion of epithelial to mesenchymal transition (EMT), migration and invasion. Moreover, when breast cancer cells arrive in the bone microenvironment there is an upregulation of IL-1B which promotes the creation of a conducive niche for metastatic breast cancer cells as well as stimulating initiation of the vicious cycle of bone metastasis. Pre-clinical studies have demonstrated that inhibition of IL-1 signalling reduces bone metastasis from oestrogen receptor positive/triple-negative breast cancers in various mouse models. However, effects on primary tumours and soft tissue metastasis remain controversial with some studies showing increased tumour growth in these sites, whilst others show no effects. Notably, combining anti-IL-1 therapy with standard-of-care treatments, such as chemotherapy and immunotherapy, has been demonstrated to reduce the growth of primary tumours, bone metastasis, as well as metastatic outgrowth in other organs. This review focuses on the mechanisms by which IL-1B promotes breast cancer bone metastasis.

2.
Br J Cancer ; 129(5): 754-771, 2023 09.
Article in English | MEDLINE | ID: mdl-37443350

ABSTRACT

BACKGROUND: Breast cancer (BC) metastasis, which often occurs in bone, contributes substantially to mortality. MicroRNAs play a fundamental role in BC metastasis, although microRNA-regulated mechanisms driving metastasis progression remain poorly understood. METHODS: MiRome analysis in serum from BC patients was performed by TaqMan™ low-density array. MiR-662 was overexpressed following MIMIC-transfection or lentivirus transduction. Animal models were used to investigate the role of miR-662 in BC (bone) metastasis. The effect of miR-662-overexpressing BC cell conditioned medium on osteoclastogenesis was investigated. ALDEFLUOR assays were performed to study BC stemness. RNA-sequencing transcriptomic analysis of miR-662-overexpressing BC cells was performed to evaluate gene expression changes. RESULTS: High levels of hsa-miR-662 (miR-662) in serum from BC patients, at baseline (time of surgery), were associated with future recurrence in bone. At an early-stage of the metastatic disease, miR-662 could mask the presence of BC metastases in bone by inhibiting the differentiation of bone-resorbing osteoclasts. Nonetheless, metastatic miR-662-overexpressing BC cells then progressed as overt osteolytic metastases thanks to increased stem cell-like traits. CONCLUSIONS: MiR-662 is involved in BC metastasis progression, suggesting it may be used as a prognostic marker to identify BC patients at high risk of metastasis.


Subject(s)
Bone Neoplasms , Breast Neoplasms , MicroRNAs , Animals , Bone Neoplasms/pathology , Breast Neoplasms/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Metastasis , Neoplasm Recurrence, Local/genetics , Humans
3.
Cancers (Basel) ; 15(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37190140

ABSTRACT

CDK 4/6 inhibitors have demonstrated significant improved survival for patients with estrogen receptor (ER) positive breast cancer (BC). However, the ability of these promising agents to inhibit bone metastasis from either ER+ve or triple negative BC (TNBC) remains to be established. We therefore investigated the effects of the CDK 4/6 inhibitor, palbociclib, using in vivo models of breast cancer bone metastasis. In an ER+ve T47D model of spontaneous breast cancer metastasis from the mammary fat pad to bone, primary tumour growth and the number of hind limb skeletal tumours were significantly lower in palbociclib treated animals compared to vehicle controls. In the TNBC MDA-MB-231 model of metastatic outgrowth in bone (intracardiac route), continuous palbociclib treatment significantly inhibited tumour growth in bone compared to vehicle. When a 7-day break was introduced after 28 days (mimicking the clinical schedule), tumour growth resumed and was not inhibited by a second cycle of palbociclib, either alone or when combined with the bone-targeted agent, zoledronic acid (Zol), or a CDK7 inhibitor. Downstream phosphoprotein analysis of the MAPK pathway identified a number of phosphoproteins, such as p38, that may contribute to drug-insensitive tumour growth. These data encourage further investigation of targeting alternative pathways in CDK 4/6-insensitive tumour growth.

4.
Cancers (Basel) ; 14(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36230739

ABSTRACT

Breast cancer bone metastasis is currently incurable. Evidence suggests that inhibiting IL-1 signalling with the IL1R antagonist, Anakinra, or the IL1ß antibody, Canakinumab, prevents metastasis and almost eliminates breast cancer growth in the bone. However, these drugs increase primary tumour growth. We, therefore, investigated whether targeting other members of the IL-1 pathway (Caspase-1, IL1ß or IRAK1) could reduce bone metastases without increasing tumour growth outside of the bone. Inhibition of IL-1 via MLX01 (IL1ß secretion inhibitor), VRT043198/VX765 (Caspase-1 inhibitor), Pacritinib (IRAK1 inhibitor) or Anakinra (IL1R antagonist) on tumour cell viability, migration and invasion were assessed in mouse mammary E0771 and Py8119 cells in vitro and on primary tumour growth, spontaneous metastasis and metastatic outgrowth in vivo. In vitro, Inhibition of IL-1 signalling by MLX01, VRT043198 and Anakinra reduced migration of E0771 and Py8119 cells and reversed tumour-derived IL1ß induced-increased invasion and migration towards bone cells. In vivo, VX765 and Anakinra significantly reduced spontaneous metastasis and metastatic outgrowth in the bone, whereas MLX01 reduced primary tumour growth and bone metastasis. Pacritinib had no effect on metastasis in vitro or in vivo. Targeting IL-1 signalling with small molecule inhibitors may provide a new therapeutic strategy for breast cancer bone metastasis.

5.
Expert Rev Mol Med ; 24: e11, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35227338

ABSTRACT

Bone is the most common site for advanced breast cancer to metastasise. The proinflammatory cytokine, interleukin-1ß (IL-1ß) plays a complex and contradictory role in this process. Recent studies have demonstrated that breast cancer patients whose primary tumours express IL-1ß are more likely to experience relapse in bone or other organs. Importantly, IL-1ß affects different stages of the metastatic process including growth of the primary tumour, epithelial to mesenchymal transition (EMT), dissemination of tumour cells into the blood stream, tumour cell homing to the bone microenvironment and, once in bone, this cytokine participates in the interaction between cancer cells and bone cells, promoting metastatic outgrowth at this site. Interestingly, although inhibition of IL-1ß signalling has been shown to have potent anti-metastatic effects, inhibition of the activity of this cytokine has contradictory effects on primary tumours, sometimes reducing but often promoting their growth. In this review, we focus on the complex roles of IL-1ß on breast cancer bone metastasis: specifically, we discuss the distinct effects of IL-1ß derived from tumour cells and/or microenvironment on inhibition/induction of primary breast tumour growth, induction of the metastatic process through the EMT, promotion of tumour cell dissemination into the bone metastatic niche and formation of overt metastases.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Cytokines , Epithelial-Mesenchymal Transition , Female , Humans , Interleukin-1beta , Tumor Microenvironment
6.
Front Endocrinol (Lausanne) ; 12: 749428, 2021.
Article in English | MEDLINE | ID: mdl-34733240

ABSTRACT

Clinical trials have demonstrated that adding zoledronic acid (Zol) to (neo)adjuvant standard of care has differential antitumour effects in pre- and post-menopausal women: Both benefit from reduced recurrence in bone; however, while postmenopausal women also incur survival benefit, none is seen in premenopausal women treated with adjuvant bisphosphonates. In the current study, we have used mouse models to investigate the role of oestradiol in modulating potential antitumour effects of Zol. Pre-, peri-, and post-menopausal concentrations of oestradiol were modelled in BALB/c wild-type, BALB/c nude, and C57BL/6 mice by ovariectomy followed by supplementation with oestradiol. Mice also received 40 mg/kg/day goserelin to prevent ovariectomy-induced increases in follicle-stimulating hormone (FSH). Metastasis was modelled following injection of MDA-MB-231, 4T1, or E0771 cells after ovariectomy and saline or 100 µg/kg Zol administered weekly. Supplementing ovariectomised mice with 12.5 mg/ml, 1.38 mg/ml, and 0 ng/ml oestradiol, in the presence of goserelin, resulted in serum concentrations of 153.16 ± 18.10 pg/ml, 48.64 ± 18.44 pg/ml, and 1.00 ± 0.27 pg/ml oestradiol, which are equivalent to concentrations found in pre-, peri-, and post-menopausal humans. Osteoclast activity was increased 1.5-1.8-fold with peri- and post-menopausal compared with premenopausal oestradiol, resulting in a 1.34-1.69-fold reduction in trabecular bone. Zol increased trabecular bone in all groups but did not restore bone to volumes observed under premenopausal conditions. In tumour-bearing mice, Zol reduced bone metastases in BALB/c (wild-type and nude), with greatest effects seen under pre- and post-menopausal concentrations of oestradiol. Zol did not affect soft tissue metastases in immunocompetent BALB/c mice but increased metastases 3.95-fold in C57BL/6 mice under premenopausal concentrations of oestradiol. In contrast, Zol significantly reduced soft tissue metastases 2.07 and 4.69-fold in immunocompetent BALB/c and C57BL/6 mice under postmenopausal oestradiol, mirroring the results of the clinical trials of (neo)adjuvant bisphosphonates. No effects on soft tissue metastases were observed in immunocompromised mice, and differences in antitumour response did not correlate with musculoaponeurotic fibrosarcoma (MAF), macrophage capping protein (CAPG), or PDZ domain containing protein GIPC1 (GIPC1) expression. In conclusion, oestradiol contributes to altered antitumour effects of Zol observed between pre- and post-menopausal women. However, other immunological/microenvironmental factors are also likely to contribute to this phenomenon.


Subject(s)
Antineoplastic Agents/administration & dosage , Diphosphonates/administration & dosage , Estradiol/administration & dosage , Fibula/drug effects , Tibia/drug effects , Zoledronic Acid/administration & dosage , Animals , Cell Line, Tumor , Female , Fibula/diagnostic imaging , Humans , Mice , Postmenopause , Tibia/diagnostic imaging , Tumor Microenvironment , X-Ray Microtomography
7.
Cancers (Basel) ; 13(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34439077

ABSTRACT

Metastatic recurrence, the major cause of breast cancer mortality, is driven by reactivation of dormant disseminated tumour cells that are defined by mitotic quiescence and chemoresistance. The molecular mechanisms underpinning mitotic quiescence in cancer are poorly understood, severely limiting the development of novel therapies for removal of residual, metastasis-initiating tumour cells. Here, we present a molecular portrait of the quiescent breast cancer cell transcriptome across the four main breast cancer sub-types (luminal, HER2-enriched, basal-like and claudin-low) and identify a novel quiescence-associated 22-gene signature using an established lipophilic-dye (Vybrant® DiD) retention model and whole-transcriptomic profiling (mRNA-Seq). Using functional association network analysis, we elucidate the molecular interactors of these signature genes. We then go on to demonstrate that our novel 22-gene signature strongly correlates with low tumoural proliferative activity, and with dormant disease and late metastatic recurrence (≥5 years after primary tumour diagnosis) in metastatic breast cancer in multiple clinical cohorts. These genes may govern the formation and persistence of disseminated tumour cell populations responsible for breast cancer recurrence, and therefore represent prospective novel candidates to inform future development of therapeutic strategies to target disseminated tumour cells in breast cancer, eliminate minimal residual disease and prevent metastatic recurrence.

8.
NPJ Breast Cancer ; 7(1): 95, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34290237

ABSTRACT

Breast cancer bone metastasis is currently incurable, ~75% of patients with late-stage breast cancer develop disease recurrence in bone and available treatments are only palliative. We have previously shown that production of the pro-inflammatory cytokine interleukin-1B (IL-1B) by breast cancer cells drives bone metastasis in patients and in preclinical in vivo models. In the current study, we have investigated how IL-1B from tumour cells and the microenvironment interact to affect primary tumour growth and bone metastasis through regulation of the immune system, and whether targeting IL-1 driven changes to the immune response improves standard of care therapy for breast cancer bone metastasis. Using syngeneic IL-1B/IL1R1 knock out mouse models in combination with genetic manipulation of tumour cells to overexpress IL-1B/IL1R1, we found that IL-1B signalling elicited an opposite response in primary tumours compared with bone metastases. In primary tumours, IL-1B inhibited growth, by impairing the infiltration of innate immune cell subsets with potential anti-cancer functions but promoted enhanced tumour cell migration. In bone, IL-1B stimulated the development of osteolytic metastases. In syngeneic models of breast cancer, combining standard of care treatments (Doxorubicin and Zoledronic acid) with the IL-1 receptor antagonist Anakinra inhibited both primary tumour growth and metastasis. Anakinra had opposite effects on the immune response compared to standard of care treatment, and its anti-inflammatory signature was maintained in the combination therapy. These data suggest that targeting IL-1B signalling may provide a useful therapeutic approach to inhibit bone metastasis and improve efficacy of current treatments for breast cancer patients.

9.
Cancers (Basel) ; 13(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803526

ABSTRACT

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.

10.
Physiol Rev ; 101(3): 797-855, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33356915

ABSTRACT

Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.


Subject(s)
Bone Neoplasms/secondary , Bone and Bones/pathology , Animals , Biomarkers/metabolism , Bone Density Conservation Agents/therapeutic use , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone and Bones/metabolism , Denosumab/therapeutic use , Humans
11.
Front Oral Health ; 2: 604565, 2021.
Article in English | MEDLINE | ID: mdl-35047989

ABSTRACT

The incidence of human papillomavirus (HPV)-associated cancer is increasing and HPV is now implicated in the aetiology of more than 60% of all oropharyngeal squamous cell carcinomas (OPSCC). In OPSCC, innate immune cells such as neutrophils and macrophages generally correlate with poor prognosis, whilst adaptive immune cells, such as lymphocytes, tend to correlate with improved prognosis. This may, in part, be due to differences in the immune response within the tumour microenvironment leading to the recruitment of specific tumour-associated leukocyte sub-populations. In this study, we aimed to examine if differences exist in the levels of infiltrated leukocyte sub-populations, with particular emphasis on tumour-associated neutrophils (TAN), and to determine the mechanism of chemokine-induced leukocyte recruitment in HPV-positive compared to HPV-negative OPSCC. Immunohistochemical analysis showed that HPV-negative OPSCC contained significantly more neutrophils than HPV-positive tumours, whilst levels of CD68+ macrophages and CD3+ lymphocytes were similar. Using a 3D tissue culture model to represent tumour-stromal interactions, we demonstrated that HPV-negative tumour-stromal co-cultures expressed significantly higher levels of CXCL8, leading to increased neutrophil recruitment compared to their HPV-positive counterparts. HPV-negative OPSCC cells have previously been shown to express higher levels of IL-1 than their HPV-positive counterparts, indicating that this cytokine may be responsible for driving increased chemokine production in the HPV-negative 3D model. Inhibition of IL-1R in the tumour-stromal models using the receptor-specific antagonist, anakinra, dramatically reduced chemokine secretion and significantly impaired neutrophil and monocyte recruitment, suggesting that this tumour-stromal response is mediated by the IL-1/IL-1R axis. Here, we identify a mechanism by which HPV-negative OPSCC may recruit more TAN than HPV-positive OPSCC. Since TAN are associated with poor prognosis in OPSCC, our study identifies potential therapeutic targets aimed at redressing the chemokine imbalance to reduce innate immune cell infiltration with the aim of improving patient outcome.

12.
Mol Cancer Ther ; 20(3): 589-601, 2021 03.
Article in English | MEDLINE | ID: mdl-33298589

ABSTRACT

Oncolytic viruses (OV) have been shown to activate the antitumor functions of specific immune cells like T cells. Here, we show OV can also reprogram tumor-associated macrophage (TAM) to a less immunosuppressive phenotype. Syngeneic, immunocompetent mouse models of primary breast cancer were established using PyMT-TS1, 4T1, and E0771 cell lines, and a metastatic model of breast cancer was established using the 4T1 cell line. Tumor growth and overall survival was assessed following intravenous administration of the OV, HSV1716 (a modified herpes simplex virus). Infiltration and function of various immune effector cells was assessed by NanoString, flow cytometry of dispersed tumors, and immunofluorescence analysis of tumor sections. HSV1716 administration led to marked tumor shrinkage in primary mammary tumors and a decrease in metastases. This was associated with a significant increase in the recruitment/activation of cytotoxic T cells, a reduction in the presence of regulatory T cells and the reprograming of TAMs towards a pro-inflammatory, less immunosuppressive phenotype. These findings were supported by in vitro data demonstrating that human monocyte-derived macrophages host HSV1716 replication, and that this led to immunogenic macrophage lysis. These events were dependent on macrophage expression of proliferating cell nuclear antigen (PCNA). Finally, the antitumor effect of OV was markedly diminished when TAMs were depleted using clodronate liposomes. Together, our results show that TAMs play an essential role in support of the tumoricidal effect of the OV, HSV1716-they both host viral replication via a novel, PCNA-dependent mechanism and are reprogramed to express a less immunosuppressive phenotype.


Subject(s)
Macrophages/metabolism , Oncolytic Viruses/pathogenicity , Animals , Disease Models, Animal , Female , Humans , Mammary Neoplasms, Animal , Mice , Transfection
13.
J Bone Oncol ; 25: 100317, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32995253

ABSTRACT

Late stage breast cancer commonly metastasises to bone and patient survival averages 2-3 years following diagnosis of bone involvement. One of the most successful treatments for bone metastases is the bisphosphonate, zoledronic acid (ZOL). ZOL has been used in the advanced setting for many years where it has been shown to reduce skeletal complications associated with bone metastasis. More recently, several large adjuvant clinical trials have demonstrated that administration of ZOL can prevent recurrence and improve survival when given in early breast cancer. However, these promising effects were only observed in post-menopausal women with confirmed low concentrations of circulating ovarian hormones. In this review we focus on potential interactions between the ovarian hormone, oestrogen, and ZOL to establish credible hypotheses that could explain why anti-tumour effects are specific to post-menopausal women. Specifically, we discuss the molecular and immune cell driven mechanisms by which ZOL and oestrogen affect the tumour microenvironment to inhibit/induce tumour growth and how oestrogen can interact with zoledronic acid to inhibit its anti-tumour actions.

14.
Cancer Lett ; 488: 27-39, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32474152

ABSTRACT

Tumour necrosis factor receptor-associated factor 6 (TRAF6) has been implicated in breast cancer and osteoclastic bone destruction. Here, we report that 6877002, a verified small-molecule inhibitor of TRAF6, reduced metastasis, osteolysis and osteoclastogenesis in models of osteotropic human and mouse breast cancer. First, we observed that TRAF6 is highly expressed in osteotropic breast cancer cells and its level of expression was higher in patients with bone metastasis. Pre-exposure of osteoclasts and osteoblasts to non-cytotoxic concentrations of 6877002 inhibited cytokine-induced NFκB activation and osteoclastogenesis, and reduced the ability of osteotropic human MDA-MB-231 and mouse 4T1 breast cancer cells to support bone cell activity. 6877002 inhibited human MDA-MB-231-induced osteolysis in the mouse calvaria organ system, and reduced soft tissue and bone metastases in immuno-competent mice following intra-cardiac injection of mouse 4T1-Luc2 cells. Of clinical relevance, combined administration of 6877002 with Docetaxel reduced metastasis and inhibited osteolytic bone damage in mice bearing 4T1-Luc2 cells. Thus, TRAF6 inhibitors such as 6877002 - alone or in combination with conventional chemotherapy - show promise for the treatment of metastatic breast cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bone Neoplasms/secondary , Breast Neoplasms/pathology , Docetaxel/pharmacology , TNF Receptor-Associated Factor 6/antagonists & inhibitors , Animals , Cell Line, Tumor , Female , Humans , Mice , Osteolysis/pathology
15.
Breast Cancer Res ; 21(1): 130, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31783893

ABSTRACT

BACKGROUND: Late-stage breast cancer preferentially metastasises to bone; despite advances in targeted therapies, this condition remains incurable. The lack of clinically relevant models for studying breast cancer metastasis to a human bone microenvironment has stunted the development of effective treatments for this condition. To address this problem, we have developed humanised mouse models in which breast cancer patient-derived xenografts (PDXs) metastasise to human bone implants with low variability and high frequency. METHODS: To model the human bone environment, bone discs from femoral heads of patients undergoing hip replacement surgery were implanted subcutaneously into NOD/SCID mice. For metastasis studies, 7 patient-derived xenograft tumours (PDX: BB3RC32, ER+ PR+ HER2-; BB2RC08, ER+ PR+ ER2-; BB6RC37, ER- PR- HER2- and BB6RC39, ER+ PR+ HER2+), MDA-MB-231-luc2, T47D-luc2 or MCF7-Luc2 cells were injected into the 4th mammary ducts and metastases monitored by luciferase imaging and confirmed on histological sections. Bone integrity, viability and vascularisation were assessed by uCT, calcein uptake and histomorphometry. Expression profiling of genes/proteins during different stages of metastasis were assessed by whole genome Affymetrix array, real-time PCR and immunohistochemistry. Importance of IL-1 was confirmed following anakinra treatment. RESULTS: Implantation of femoral bone provided a metabolically active, human-specific site for tumour cells to metastasise to. After 4 weeks, bone implants were re-vascularised and demonstrated active bone remodelling (as evidenced by the presence of osteoclasts, osteoblasts and calcein uptake). Restricting bone implants to the use of subchondral bone and introduction of cancer cells via intraductal injection maximised metastasis to human bone implants. MDA-MB-231 cells specifically metastasised to human bone (70% metastases) whereas T47D, MCF7, BB3RC32, BB2RC08, and BB6RC37 cells metastasised to both human bone and mouse bones. Importantly, human bone was the preferred metastatic site especially from ER+ PDX (100% metastasis human bone compared with 20-75% to mouse bone), whereas ER-ve PDX developed metastases in 20% of human and 20% of mouse bone. Breast cancer cells underwent a series of molecular changes as they progressed from primary tumours to bone metastasis including altered expression of IL-1B, IL-1R1, S100A4, CTSK, SPP1 and RANK. Inhibiting IL-1B signalling significantly reduced bone metastasis. CONCLUSIONS: Our reliable and clinically relevant humanised mouse models provide significant advancements in modelling of breast cancer bone metastasis.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Disease Models, Animal , Animals , Biomarkers, Tumor , Biopsy , Bone Neoplasms/diagnosis , Bone and Bones/pathology , Breast Neoplasms/metabolism , Cell Survival , Female , Heterografts , Humans , Immunohistochemistry , Immunophenotyping , Mice , Mice, Inbred NOD , Mice, SCID , Neovascularization, Pathologic , Tumor Microenvironment
16.
Nat Commun ; 10(1): 5016, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676788

ABSTRACT

Dissemination of tumour cells to the bone marrow is an early event in breast cancer, however cells may lie dormant for many years before bone metastases develop. Treatment for bone metastases is not curative, therefore new adjuvant therapies which prevent the colonisation of disseminated cells into metastatic lesions are required. There is evidence that cancer stem cells (CSCs) within breast tumours are capable of metastasis, but the mechanism by which these colonise bone is unknown. Here, we establish that bone marrow-derived IL1ß stimulates breast cancer cell colonisation in the bone by inducing intracellular NFkB and CREB signalling in breast cancer cells, leading to autocrine Wnt signalling and CSC colony formation. Importantly, we show that inhibition of this pathway prevents both CSC colony formation in the bone environment, and bone metastasis. These findings establish that targeting IL1ß-NFKB/CREB-Wnt signalling should be considered for adjuvant therapy to prevent breast cancer bone metastasis.


Subject(s)
Bone Neoplasms/metabolism , Breast Neoplasms/metabolism , Interleukin-1beta/metabolism , Neoplastic Stem Cells/metabolism , Wnt Signaling Pathway , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Female , HEK293 Cells , Humans , MCF-7 Cells , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Knockout , Mice, Nude , Mice, SCID , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Sulfasalazine/administration & dosage , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
17.
J Bone Oncol ; 17: 100244, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31236323

ABSTRACT

BACKGROUND: Bone metastasis is one of the most common complications of advanced breast cancer. During dissemination to bone, breast cancer cells locate in a putative 'metastatic niche', a microenvironment that regulates the colonisation, maintenance of tumour cell dormancy and subsequent tumour growth. The precise location and composition of the bone metastatic niche is not clearly defined. We have used in vivo models of early breast cancer dissemination to provide novel evidence that demonstrates overlap between endosteal, perivascular, HSC and the metastatic niche in bone. METHODS: Estrogen Receptor (ER) +ve and -ve breast cancer cells were labelled with membrane dyes Vybrant-DiD and Vybrant-CM-DiI and injected via different routes in BALBc/nude mice of different ages. Two-photon microscopy was used to detect and quantitate tumour cells and map their location within the bone microenvironment as well as their distance to the nearest bone surface compared to the nearest other tumour cell. To investigate whether the metastatic niche overlapped with the HSC niche, animals were pre-treated with the CXCR4 antagonist AMD3100 to mobilise hematopoietic (HSCs) prior to injection of breast cancer cells. RESULTS: Breast cancer cells displayed a characteristic pattern of homing in the long bones, with the majority of tumour cells seeded in the trabecular regions, regardless of the route of injection, cell-line characteristics (ER status) or animal age. Breast cancer cells located in close proximity to the nearest bone surface and the average distance between individual tumour cells was higher than their distance to bone. Mobilisation of HSCs from the niche to the circulation prior to injection of cell lines resulted in increased numbers of tumour cells disseminated in trabecular regions. CONCLUSION: Our data provide evidence that homing of breast cancer cells is independent of their ER status and that the breast cancer bone metastasis niche is located within the trabecular region of bone, an area rich in osteoblasts and microvessels. The increased number of breast cancer cells homing to bone after mobilisation of HSCs suggests that the HSC and the bone metastasis niche overlap.

18.
Cancer Lett ; 450: 76-87, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30790681

ABSTRACT

IκB kinase subunit epsilon (IKKε), a key component of NFκB and interferon signalling, has been identified as a breast cancer oncogene. Here we report that the IKKε/TBK1 axis plays a role in the initiation and progression of breast cancer osteolytic metastasis. Cancer-specific knockdown of IKKε in the human MDA-MB-231-BT cells and treatment with the verified IKKε/TBK1 inhibitor Amlexanox reduced skeletal tumour growth and osteolysis in mice. In addition, combined administration of Amlexanox with Docetaxel reduced mammary tumour growth of syngeneic 4T1 cells, inhibited metastases and improved survival in mice after removal of the primary tumour. Functional and mechanistic studies in breast cancer cells, osteoclasts and osteoblasts revealed that IKKε inhibition reduces the ability of breast cancer cells to grow, move and enhance osteoclastogenesis by engaging both IRF and NFκB signalling pathways. Thus, therapeutic targeting of the IKKε/TBK1 axis may be of value in the treatment of advanced triple negative breast cancer.


Subject(s)
Aminopyridines/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Docetaxel/pharmacology , I-kappa B Kinase/antagonists & inhibitors , Mammary Neoplasms, Experimental/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Aminopyridines/administration & dosage , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Docetaxel/administration & dosage , Drug Synergism , Female , Humans , I-kappa B Kinase/metabolism , MCF-7 Cells , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , RAW 264.7 Cells
19.
Methods Mol Biol ; 1914: 309-330, 2019.
Article in English | MEDLINE | ID: mdl-30729473

ABSTRACT

This chapter is designed to provide a comprehensive overview outlining the different in vivo models available for research into breast cancer bone metastasis. The main focus is to guide the researcher through the methodological processes required to establish and utilize these models within their own laboratory. These detailed methods are designed to enable the acquisition of accurate and meaningful results that can be used for publication and future translation into clinical benefit for women with breast cancer-induced bone metastasis.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Disease Models, Animal , Xenograft Model Antitumor Assays/methods , Animals , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/pathology , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Breast Neoplasms/diagnostic imaging , Cell Line, Tumor , Embryo, Nonmammalian , Female , Humans , Luciferases/chemistry , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Mice , Mice, Nude , Mice, SCID , Optical Imaging/instrumentation , Optical Imaging/methods , Xenograft Model Antitumor Assays/instrumentation , Zebrafish
20.
Clin Cancer Res ; 25(9): 2769-2782, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30670488

ABSTRACT

PURPOSE: Breast cancer bone metastases are incurable, highlighting the need for new therapeutic targets. After colonizing bone, breast cancer cells remain dormant, until signals from the microenvironment stimulate outgrowth into overt metastases. Here we show that endogenous production of IL1B by tumor cells drives metastasis and growth in bone. EXPERIMENTAL DESIGN: Tumor/stromal IL1B and IL1 receptor 1 (IL1R1) expression was assessed in patient samples and effects of the IL1R antagonist, Anakinra, or the IL1B antibody canakinumab on tumor growth and spontaneous metastasis were measured in a humanized mouse model of breast cancer bone metastasis. Effects of tumor cell-derived IL1B on bone colonization and parameters associated with metastasis were measured in MDA-MB-231, MCF7, and T47D cells transfected with IL1B/control. RESULTS: In tissue samples from >1,300 patients with stage II/III breast cancer, IL1B in tumor cells correlated with relapse in bone (HR = 1.85; 95% CI, 1.05-3.26; P = 0.02) and other sites (HR = 2.09; 95% CI, 1.26-3.48; P = 0.0016). In a humanized model of spontaneous breast cancer metastasis to bone, Anakinra or canakinumab reduced metastasis and reduced the number of tumor cells shed into the circulation. Production of IL1B by tumor cells promoted epithelial-to-mesenchymal transition (altered E-Cadherin, N-Cadherin, and G-Catenin), invasion, migration, and bone colonization. Contact between tumor and osteoblasts or bone marrow cells increased IL1B secretion from all three cell types. IL1B alone did not stimulate tumor cell proliferation. Instead, IL1B caused expansion of the bone metastatic niche leading to tumor proliferation. CONCLUSIONS: Pharmacologic inhibition of IL1B has potential as a novel treatment for breast cancer metastasis.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition , Interleukin-1beta/metabolism , Tumor Microenvironment , Aged , Animals , Apoptosis , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Case-Control Studies , Cell Proliferation , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Interleukin-1beta/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...