Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 5418, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686145

ABSTRACT

Bone regeneration is a complex process and the clinical translation of tissue engineered constructs (TECs) remains a challenge. The combination of biomaterials and mesenchymal stem cells (MSCs) may enhance the healing process through paracrine effects. Here, we investigated the influence of cell format in combination with a collagen scaffold on key factors in bone healing process, such as mineralization, cell infiltration, vascularization, and ECM production. MSCs as single cells (2D-SCs), assembled into microtissues (3D-MTs) or their corresponding secretomes were combined with a collagen scaffold and incubated on the chicken embryo chorioallantoic membrane (CAM) for 7 days. A comprehensive quantitative analysis was performed on a cellular level by histology and by microcomputed tomography (microCT). In all experimental groups, accumulation of collagen and glycosaminoglycan within the scaffold was observed over time. A pronounced cell infiltration and vascularization from the interface to the surface region of the CAM was detected. The 3D-MT secretome showed a significant mineralization of the biomaterial using microCT compared to all other conditions. Furthermore, it revealed a homogeneous distribution pattern of mineralization deposits in contrast to the cell-based scaffolds, where mineralization was only at the surface. Therefore, the secretome of MSCs assembled into 3D-MTs may represent an interesting therapeutic strategy for a next-generation bone healing concept.


Subject(s)
Bone and Bones/metabolism , Calcification, Physiologic , Chorioallantoic Membrane , Mesenchymal Stem Cells/metabolism , Secretome/metabolism , Tissue Scaffolds/chemistry , Animals , Bone and Bones/diagnostic imaging , Chick Embryo , Female , Humans , Swine , X-Ray Microtomography
2.
J Biomed Mater Res B Appl Biomater ; 107(6): 1833-1843, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30461201

ABSTRACT

Tissue engineering of an osteochondral interface demands for a gradual transition of chondrocyte- to osteoblast-prevailing tissue. If stem cells are used as a single cell source, an appropriate cue to trigger the desired differentiation is the use of composite materials with different amounts of calcium phosphate. Electrospun meshes of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) in weight ratios of 100:0; 90:10, 80:20, and 70:30 were seeded with human adipose-derived stem cells (ASCs) and cultured in DMEM without chemical supplementation. After 2 weeks of static cultivation, they were either further cultivated statically for another 2 weeks (group 1), or placed in a Bose® bioreactor with a flow rate per area of 0.16 mL cm-2 min-1 (group 2). Markers for stem cell criteria, chondrogenesis, osteogenesis, adipogenesis and angiogenesis were analyzed by quantitative real-time PCR. Cell distribution, Sox9 protein expression and proteoglycans were assessed by histology. In group 2 (perfusion culture), chondrogenic Sox9 was upregulated toward the cartilage-mimicking side compared to pure PLGA. On the bone-mimicking side, Sox9 experienced a downregulation, which was confirmed on the protein level. Vice versa, expression of osteocalcin was upregulated on the bone-mimicking side, while it was unchanged on the cartilage-mimicking side. In group 1 (static culture), CD31 was upregulated in the presence of aCaP compared to pure PLGA, whereas Sox9 and osteocalcin expression were not affected. aCaP nanoparticles incorporated in electrospun PLGA drive the differentiation behavior of human ASCs in a dose-dependent manner. Discrete gradients of aCaP may act as promising osteochondral interfaces. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1833-1843, 2019.


Subject(s)
Adipose Tissue , Bone and Bones , Cartilage , Cell Differentiation , Stem Cells , Tissue Engineering , Adipose Tissue/cytology , Adipose Tissue/metabolism , Bone and Bones/cytology , Bone and Bones/metabolism , Cartilage/cytology , Cartilage/metabolism , Cell Culture Techniques , Cells, Cultured , Humans , Perfusion , Stem Cells/cytology , Stem Cells/metabolism
3.
Public Underst Sci ; 25(6): 638-55, 2016 08.
Article in English | MEDLINE | ID: mdl-25814513

ABSTRACT

Many scholars have argued for the need to communicate openly not only scientific successes to the public but also limitations, such as the tentativeness of research findings, in order to enhance public trust and engagement. Yet, it has not been quantitatively assessed how the perception of scientific uncertainties relates to engagement with science on an individual level. In this article, we report the development and testing of a new questionnaire in English and German measuring the perceived uncertainty of scientific evidence. Results indicate that the scale is reliable and valid in both language versions and that its two subscales are differentially related to measures of engagement: Science-friendly attitudes were positively related only to 'subjectively' perceived uncertainty, whereas interest in science as well as behavioural engagement actions and intentions were largely uncorrelated. We conclude that perceiving scientific knowledge to be uncertain is only weakly, but positively related to engagement with science.


Subject(s)
Perception , Public Opinion , Science/methods , Uncertainty , Adult , Attitude , Female , Germany , Humans , Knowledge , Male , Middle Aged , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...