Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Metab Eng ; 77: 219-230, 2023 05.
Article in English | MEDLINE | ID: mdl-37031949

ABSTRACT

Malonyl-CoA is a central precursor for biosynthesis of a wide range of complex secondary metabolites. The development of platform strains with increased malonyl-CoA supply can contribute to the efficient production of secondary metabolites, especially if such strains exhibit high tolerance towards these chemicals. In this study, Pseudomonas taiwanensis VLB120 was engineered for increased malonyl-CoA availability to produce bacterial and plant-derived polyketides. A multi-target metabolic engineering strategy focusing on decreasing the malonyl-CoA drain and increasing malonyl-CoA precursor availability, led to an increased production of various malonyl-CoA-derived products, including pinosylvin, resveratrol and flaviolin. The production of flaviolin, a molecule deriving from five malonyl-CoA molecules, was doubled compared to the parental strain by this malonyl-CoA increasing strategy. Additionally, the engineered platform strain enabled production of up to 84 mg L-1 resveratrol from supplemented p-coumarate. One key finding of this study was that acetyl-CoA carboxylase overexpression majorly contributed to an increased malonyl-CoA availability for polyketide production in dependence on the used strain-background and whether downstream fatty acid synthesis was impaired, reflecting its complexity in metabolism. Hence, malonyl-CoA availability is primarily determined by competition of the production pathway with downstream fatty acid synthesis, while supply reactions are of secondary importance for compounds that derive directly from malonyl-CoA in Pseudomonas.


Subject(s)
Malonyl Coenzyme A , Polyketides , Pseudomonas , Fatty Acids/metabolism , Malonyl Coenzyme A/metabolism , Polyketides/metabolism , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas/metabolism , Resveratrol/metabolism , Secondary Metabolism , Stilbenes/metabolism , Coumaric Acids/metabolism , Phenylalanine/metabolism , Genome, Bacterial/genetics , Sequence Deletion , Acetyl Coenzyme A/metabolism , Citrate (si)-Synthase/metabolism , Pyruvic Acid/metabolism , Phytoalexins/metabolism , Naphthoquinones/metabolism
2.
Microbiology (Reading) ; 166(11): 1025-1037, 2020 11.
Article in English | MEDLINE | ID: mdl-33095135

ABSTRACT

Microbial bioproduction of the aromatic acid anthranilate (ortho-aminobenzoate) has the potential to replace its current, environmentally demanding production process. The host organism employed for such a process needs to fulfil certain demands to achieve industrially relevant product levels. As anthranilate is toxic for microorganisms, the use of particularly robust production hosts can overcome issues from product inhibition. The microorganisms Corynebacterium glutamicum and Pseudomonas putida are known for high tolerance towards a variety of chemicals and could serve as promising platform strains. In this study, the resistance of both wild-type strains towards anthranilate was assessed. To further enhance their native tolerance, adaptive laboratory evolution (ALE) was applied. Sequential batch fermentation processes were developed, adapted to the cultivation demands for C. glutamicum and P. putida, to enable long-term cultivation in the presence of anthranilate. Isolation and analysis of single mutants revealed phenotypes with improved growth behaviour in the presence of anthranilate for both strains. The characterization and improvement of both potential hosts provide an important basis for further process optimization and will aid the establishment of an industrially competitive method for microbial synthesis of anthranilate.


Subject(s)
Corynebacterium glutamicum/metabolism , Pseudomonas putida/metabolism , ortho-Aminobenzoates/metabolism , Adaptation, Physiological , Bioreactors , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/growth & development , Directed Molecular Evolution , Industrial Microbiology , Mutation , Pseudomonas putida/genetics , Pseudomonas putida/growth & development
3.
Appl Microbiol Biotechnol ; 104(21): 9267-9282, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32974745

ABSTRACT

The acetic acid bacterium (AAB) Gluconobacter oxydans incompletely oxidizes a wide variety of carbohydrates and is therefore used industrially for oxidative biotransformations. For G. oxydans, no system was available that allows regulatable plasmid-based expression. We found that the L-arabinose-inducible PBAD promoter and the transcriptional regulator AraC from Escherichia coli MC4100 performed very well in G. oxydans. The respective pBBR1-based plasmids showed very low basal expression of the reporters ß-glucuronidase and mNeonGreen, up to 480-fold induction with 1% L-arabinose, and tunability from 0.1 to 1% L-arabinose. In G. oxydans 621H, L-arabinose was oxidized by the membrane-bound glucose dehydrogenase, which is absent in the multi-deletion strain BP.6. Nevertheless, AraC-PBAD performed similar in both strains in the exponential phase, indicating that a gene knockout is not required for application of AraC-PBAD in wild-type G. oxydans strains. However, the oxidation product arabinonic acid strongly contributed to the acidification of the growth medium in 621H cultures during the stationary phase, which resulted in drastically decreased reporter activities in 621H (pH 3.3) but not in BP.6 cultures (pH 4.4). These activities could be strongly increased quickly solely by incubating stationary cells in D-mannitol-free medium adjusted to pH 6, indicating that the reporters were hardly degraded yet rather became inactive. In a pH-controlled bioreactor, these reporter activities remained high in the stationary phase (pH 6). Finally, we created a multiple cloning vector with araC-PBAD based on pBBR1MCS-5. Together, we demonstrated superior functionality and good tunability of an AraC-PBAD system in G. oxydans that could possibly also be used in other AAB. KEY POINTS: • We found the AraC-PBAD system from E. coli MC4100 was well tunable in G. oxydans. • In the absence of AraC or l-arabinose, expression from PBAD was extremely low. • This araC-PBAD system could also be fully functional in other acetic acid bacteria.


Subject(s)
Gluconobacter oxydans , Gluconobacter , Acetic Acid , Arabinose , Escherichia coli/genetics , Gluconobacter oxydans/genetics , Plasmids/genetics
4.
Biotechnol J ; 15(11): e1900569, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32978889

ABSTRACT

Aromatics and their derivatives are valuable chemicals with a plethora of important applications and thus play an integral role in modern society. Their current production relies mostly on the exploitation of petroleum resources. Independency from dwindling fossil resources and rising environmental concerns are major driving forces for the transition towards the production of sustainable aromatics from renewable feedstocks or waste streams. Whole-cell biocatalysis is a promising strategy that allows the valorization of highly abundant, low-cost substrates. In the last decades, extensive efforts are undertaken to allow the production of a wide spectrum of different aromatics and derivatives using microbes as biocatalysts. Pseudomonads are intriguing hosts for biocatalysis, as they display unique characteristics beneficial for the production of aromatics, including a distinct tolerance and versatile metabolism. This review highlights biotechnological applications of Pseudomonas as host for the production of aromatics and derived compounds. This includes their de novo biosynthesis from renewable resources, biotransformations in single- and biphasic fermentation setups, metabolic funneling of lignin-derived aromatics, and the upcycling of aromatic monomers from plastic waste streams. Additionally, this review provides insights into unique features of Pseudomonads that make them exceptional hosts for aromatics biotechnology and discusses engineering strategies.


Subject(s)
Lignin , Pseudomonas , Biocatalysis , Biotechnology , Fermentation , Lignin/metabolism
5.
Biotechnol J ; 15(11): e2000211, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32721071

ABSTRACT

Benzoic acid is one of the most commonly used food preservatives, but currently exclusively produced in petrochemical processes. In this study, a bio-based production pathway using an engineered strain of Pseudomonas taiwanensis is described. In a phenylalanine-overproducing strain, bacterial and plant genes are heterologously expressed to achieve production of benzoate via a ß-oxidation pathway. Strategic disruption of the native Pseudomonas benzoate degradation pathway further allows the production of catechol and cis,cis-muconate. Taken together, this work demonstrates new routes for the microbial production of these industrially relevant chemicals from renewable resources.


Subject(s)
Benzoates , Glycerol , Bacterial Proteins/genetics , Glucose , Pseudomonas/genetics
6.
Article in English | MEDLINE | ID: mdl-31824929

ABSTRACT

Microbial biocatalysis represents a promising alternative for the production of a variety of aromatic chemicals, where microorganisms are engineered to convert a renewable feedstock under mild production conditions into a valuable chemical building block. This study describes the rational engineering of the solvent-tolerant bacterium Pseudomonas taiwanensis VLB120 toward accumulation of L-phenylalanine and its conversion into the chemical building block t-cinnamate. We recently reported rational engineering of Pseudomonas toward L-tyrosine accumulation by the insertion of genetic modifications that allow both enhanced flux and prevent aromatics degradation. Building on this knowledge, three genes encoding for enzymes involved in the degradation of L-phenylalanine were deleted to allow accumulation of 2.6 mM of L-phenylalanine from 20 mM glucose. The amino acid was subsequently converted into the aromatic model compound t-cinnamate by the expression of a phenylalanine ammonia-lyase (PAL) from Arabidopsis thaliana. The engineered strains produced t-cinnamate with yields of 23 and 39% Cmol Cmol-1 from glucose and glycerol, respectively. Yields were improved up to 48% Cmol Cmol-1 from glycerol when two enzymes involved in the shikimate pathway were additionally overexpressed, however with negative impact on strain performance and reproducibility. Production titers were increased in fed-batch fermentations, in which 33.5 mM t-cinnamate were produced solely from glycerol, in a mineral medium without additional complex supplements. The aspect of product toxicity was targeted by the utilization of a streamlined, genome-reduced strain, which improves upon the already high tolerance of P. taiwanensis VLB120 toward t-cinnamate.

7.
ACS Synth Biol ; 8(9): 2036-2050, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31465206

ABSTRACT

Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.


Subject(s)
Metabolic Engineering , Pseudomonas/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomass , Genome, Bacterial , Glycerol/metabolism , Mutagenesis , Phenol/chemistry , Phenol/metabolism , Plasmids/genetics , Plasmids/metabolism , Pseudomonas/genetics , Pseudomonas/growth & development , Solvents/chemistry
8.
ACS Synth Biol ; 8(8): 1901-1912, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31298831

ABSTRACT

Ribosomal RNA (rRNA) operons have recently been identified as promising sites for chromosomal integration of genetic elements in Pseudomonas putida, a bacterium that has gained considerable popularity as a microbial cell factory. We have developed a tool for targeted integration of recombinant genes into the rRNA operons of various Pseudomonas strains, where the native context of the rRNA clusters enables effective transcription of heterologous genes. However, a sufficient translation of foreign mRNA  transcriptionally fused to rRNA required optimization of RNA secondary structures, which was achieved utilizing synthetic ribozymes and a bicistronic design. The generated tool further enabled the characterization of the six rRNA promoter units of P. putida S12 under different growth conditions. The presence of multiple, almost identical rRNA operons in Pseudomonas also allowed the integration of multiple copies of heterologous genetic elements. The integration of two expression cassettes and the resulting disruption of rRNA units only moderately affects growth rates, and the constructs were highly stable over more than 160 generations.


Subject(s)
DNA, Ribosomal/metabolism , DNA, Ribosomal/genetics , Pseudomonas/genetics , Pseudomonas/metabolism , RNA, Catalytic/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Synthetic Biology , rRNA Operon/genetics
9.
Article in English | MEDLINE | ID: mdl-31245364

ABSTRACT

Aromatic compounds such as 4-hydroxybenzoic acid are broadly applied in industry for a myriad of applications used in everyday life. However, their industrial production currently relies heavily on fossil resources and involves environmentally unfriendly production conditions, thus creating the need for more sustainable biotechnological alternatives. In this study, synthetic biology was applied to metabolically engineer Pseudomonas taiwanensis VLB120 to produce 4-hydroxybenzoate from glucose, xylose, or glycerol as sole carbon sources. Genes encoding a 4-hydroxybenzoate production pathway were integrated into the host genome and the flux toward the central precursor tyrosine was enhanced by overexpressing genes encoding key enzymes of the shikimate pathway. The flux toward tryptophan biosynthesis was decreased by introducing a P290S point mutation in the trpE gene, and degradation pathways for 4-hydroxybenzoate, 4-hydroxyphenylpyruvate and 3-dehydroshikimate were knocked out. The resulting production strains were tailored for the utilization of glucose and glycerol through the rational modification of central carbon metabolism. In batch cultivations with a completely mineral medium, the best strain produced 1.37 mM 4-hydroxybenzoate from xylose with a C-mol yield of 8% and 3.3 mM from glucose with a C-mol yield of 19.0%. Using glycerol as a sole carbon source, the C-mol yield increased to 29.6%. To our knowledge, this is the highest yield achieved by any species in a fully mineral medium. In all, the efficient conversion of bio-based substrates into 4-hydroxybenzoate by these deeply engineered P. taiwanensis strains brings the renewable production of aromatics one step closer.

10.
Sci Rep ; 9(1): 7028, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31065014

ABSTRACT

Since high-value bacterial secondary metabolites, including antibiotics, are often naturally produced in only low amounts, their efficient biosynthesis typically requires the transfer of entire metabolic pathways into suitable bacterial hosts like Pseudomonas putida. Stable maintenance and sufficient expression of heterologous pathway-encoding genes in host microbes, however, still remain key challenges. In this study, the 21 kb prodigiosin gene cluster from Serratia marcescens was used as a reporter to identify genomic sites in P. putida KT2440 especially suitable for maintenance and expression of pathway genes. After generation of a strain library by random Tn5 transposon-based chromosomal integration of the cluster, 50 strains exhibited strong prodigiosin production. Remarkably, chromosomal integration sites were exclusively identified in the seven rRNA-encoding rrn operons of P. putida. We could further demonstrate that prodigiosin production was mainly dependent on (i) the individual rrn operon where the gene cluster was inserted as well as (ii) the distance between the rrn promoter and the inserted prodigiosin biosynthetic genes. In addition, the recombinant strains showed high stability upon subculturing for many generations. Consequently, our findings demonstrate the general applicability of rDNA loci as chromosomal integration sites for gene cluster expression and recombinant pathway implementation in P. putida KT2440.


Subject(s)
DNA, Ribosomal/genetics , Genetic Engineering/methods , Prodigiosin/biosynthesis , Pseudomonas putida/genetics , Chromosomes, Bacterial , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Ribosomal/metabolism , Gene Expression Regulation, Bacterial , Microorganisms, Genetically-Modified , Multigene Family , Operon , Plasmids/genetics , Promoter Regions, Genetic , Protein Biosynthesis/genetics , Pseudomonas putida/metabolism , Serratia marcescens/genetics
11.
Metab Eng ; 47: 121-133, 2018 05.
Article in English | MEDLINE | ID: mdl-29548982

ABSTRACT

Aromatic chemicals are important building blocks for the production of a multitude of everyday commodities. Currently, aromatics production relies almost exclusively on petrochemical processes. To achieve sustainability, alternative synthesis methods need to be developed. Here, we strived for an efficient production of phenol, a model aromatic compound of industrial relevance, from renewable carbon sources using the solvent-tolerant biocatalyst Pseudomonas taiwanensis VLB120. First, multiple catabolic routes for the degradation of aromatics and related compounds were inactivated, thereby obtaining the chassis strain P. taiwanensis VLB120Δ5 incapable of growing on 4-hydroxybenzoate (ΔpobA), tyrosine (Δhpd), and quinate (ΔquiC, ΔquiC1, ΔquiC2). In this context, a novel gene contributing to the quinate catabolism was identified (quiC2). Second, we employed a combination of reverse- and forward engineering to increase metabolic flux towards the product, using leads obtained from the analysis of aromatics producing Pseudomonas putida strains previously generated by mutagenesis. Phenol production was enabled by the heterologous expression of a codon-optimized and chromosomally integrated tyrosine phenol-lyase encoding gene from Pantoea agglomerans AJ2985 (PaTPL2). The genomic modification of endogenous genes encoding TrpEP290S, AroF-1P148L, and PheAT310I, and the deletion of pykA improved phenol production 17-fold, while also minimizing the burden caused by plasmids and auxotrophies. The additional overexpression of known bottleneck enzymes (AroGfbr, TyrAfbr) derived from Escherichia coli further enhanced phenol titers. The best producing strain P. taiwanensis VLB120Δ5-TPL36 reached yields of 15.8% and 18.5% (Cmol/Cmol) phenol from glucose and glycerol, respectively, in a mineral medium without addition of complex nutrients. This is the highest yield ever reported for microbially produced phenol.


Subject(s)
Genome, Bacterial , Metabolic Engineering , Mutagenesis , Phenol/metabolism , Pseudomonas , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pantoea/enzymology , Pantoea/genetics , Pseudomonas/genetics , Pseudomonas/metabolism , Tyrosine Phenol-Lyase/genetics , Tyrosine Phenol-Lyase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...