Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exerc Sport Mov ; 1(3): 1-4, 2023.
Article in English | MEDLINE | ID: mdl-38130893

ABSTRACT

Introduction/Purpose: We tested the hypothesis that an objective measure of auditory processing reveals a history of head trauma that does not meet the clinical definition of concussion. Methods: Division I collegiate student-athletes (n = 709) across 19 sports were divided into groups, based on their sport, using prevailing classifications of "contact" (317 males, 212 females) and "noncontact" (58 males, 122 females). Participants were evaluated using the frequency-following response (FFR) to speech. The amplitude of FFR activity in a frequency band corresponding to the fundamental frequency (F0)-the voice pitch-of the speech stimulus, an outcome reduced in individuals with concussions, was critically examined. Results: We found main effects of contact level and sex. The FFR-F0 was smaller in contact athletes than noncontact athletes and larger in females than males. There was a contact by sex interaction, with the FFR-F0 of males in the contact group being smaller than the three other groups. Secondary analyses found a correlation between FFR-F0 and length of participation in contact sports in male athletes. Conclusion: These findings suggest that the disruption of sensory processing in the brain can be observed in individuals without a concussion but whose sport features regular physical contact. This evidence identifies sound processing in the brain as an objective marker of subconcussion in athletes.

2.
Sci Rep ; 12(1): 15181, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071146

ABSTRACT

Biology and experience both influence the auditory brain. Sex is one biological factor with pervasive effects on auditory processing. Females process sounds faster and more robustly than males. These differences are linked to hormone differences between the sexes. Athleticism is an experiential factor known to reduce ongoing neural noise, but whether it influences how sounds are processed by the brain is unknown. Furthermore, it is unknown whether sports participation influences auditory processing differently in males and females, given the well-documented sex differences in auditory processing seen in the general population. We hypothesized that athleticism enhances auditory processing and that these enhancements are greater in females. To test these hypotheses, we measured auditory processing in collegiate Division I male and female student-athletes and their non-athlete peers (total n = 1012) using the frequency-following response (FFR). The FFR is a neurophysiological response to sound that reflects the processing of discrete sound features. We measured across-trial consistency of the response in addition to fundamental frequency (F0) and harmonic encoding. We found that athletes had enhanced encoding of the harmonics, which was greatest in the female athletes, and that athletes had more consistent responses than non-athletes. In contrast, F0 encoding was reduced in athletes. The harmonic-encoding advantage in female athletes aligns with previous work linking harmonic encoding strength to female hormone levels and studies showing estrogen as mediating athlete sex differences in other sensory domains. Lastly, persistent deficits in auditory processing from previous concussive and repetitive subconcussive head trauma may underlie the reduced F0 encoding in athletes, as poor F0 encoding is a hallmark of concussion injury.


Subject(s)
Brain Concussion , Sports , Auditory Perception/physiology , Estrogens , Female , Humans , Male , Sound
3.
J Neurosci Methods ; 362: 109290, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34273451

ABSTRACT

BACKGROUND: The frequency-following response, or FFR, is a neurophysiologic response that captures distinct aspects of sound processing. Like all evoked responses, FFR is susceptible to electric and myogenic noise contamination during collection. Click-evoked auditory brainstem response collection standards have been adopted for FFR collection, however, whether these standards sufficiently limit FFR noise contamination is unknown. Thus, a critical question remains: to what extent do distinct FFR components reflect noise contamination? This is especially relevant for prestimulus amplitude (i.e., activity preceding the evoked response), as this measure has been used to index both noise contamination and neural noise. NEW METHOD: We performed two experiments. First, using >1000 young-adult FFRs, we ran regressions to determine the variance explained by myogenic and electrical noise, as indexed by artifact rejection count and electrode impedance, on each FFR component. Second, we reanalyzed prestimulus amplitude differences attributed to athletic experience and socioeconomic status, adding covariates of artifact rejection and impedance. RESULTS: We found that non-neural noise marginally contributed to FFR components and could not explain group differences on prestimulus amplitude. COMPARISON WITH EXISTING METHOD: Prestimulus amplitude has been considered a measure of non-neural noise contamination. However, non-neural noise was not the sole contributor to variance in this measure and did not explain group differences. CONCLUSIONS: Results from the two experiments suggest that the effects of non-neural noise on FFR components are minimal and do not obscure individual differences in the FFR and that prestimulus amplitude indexes neural noise.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Noise , Acoustic Stimulation , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...