Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 167: 107102, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896988

ABSTRACT

Type 2 Diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, resulting from deficits in insulin secretion, insulin action, or both. Whilst the role of insulin in the peripheral nervous system has been ascertained in countless studies, its role in the central nervous system (CNS) is emerging only recently. Brain insulin has been lately associated with brain disorders like Alzheimer's disease, obsessive compulsive disorder, and attention deficit hyperactivity disorder. Thus, understanding the role of insulin as a common risk factor for mental and somatic comorbidities may disclose novel preventative and therapeutic approaches. We evaluated general metabolism (glucose tolerance, insulin sensitivity, energy expenditure, lipid metabolism, and polydipsia) and cognitive capabilities (attention, cognitive flexibility, and memory), in adolescent, young adult, and adult male and female TALLYHO/JngJ mice (TH, previously reported to constitute a valid experimental model of T2DM due to impaired insulin signaling). Adult TH mice have also been studied for alterations in gut microbiota diversity and composition. While TH mice exhibited profound deficits in cognitive flexibility and altered glucose metabolism, we observed that these alterations emerged either much earlier (males) or independent of (females) a comprehensive constellation of symptoms, isomorphic to an overt T2DM-like phenotype (insulin resistance, polydipsia, higher energy expenditure, and altered lipid metabolism). We also observed significant sex-dependent alterations in gut microbiota alpha diversity and taxonomy in adult TH mice. Deficits in insulin signaling may represent a common risk factor for both T2DM and CNS-related deficits, which may stem from (partly) independent mechanisms.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Phenotype , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Mice , Male , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Hyperglycemia/metabolism , Female , Insulin Resistance/physiology , Insulin/metabolism , Disease Models, Animal , Energy Metabolism/physiology , Blood Glucose/metabolism , Gastrointestinal Microbiome/physiology , Lipid Metabolism/physiology , Polydipsia/metabolism
2.
Neurosci Biobehav Rev ; 155: 105435, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913873

ABSTRACT

Beside its involvement in somatic dysfunctions, altered insulin signalling constitutes a risk factor for the development of mental disorders like Alzheimer's disease and obsessive-compulsive disorder. While insulin-related somatic and mental disorders are often comorbid, the fundamental mechanisms underlying this association are still elusive. Studies conducted in rodent models appear well suited to help decipher these mechanisms. Specifically, these models are apt to prospective studies in which causative mechanisms can be manipulated via multiple tools (e.g., genetically engineered models and environmental interventions), and experimentally dissociated to control for potential confounding factors. Here, we provide a narrative synthesis of preclinical studies investigating the association between hyperglycaemia - as a proxy of insulin-related metabolic dysfunctions - and impairments in working and spatial memory, and attention. Ultimately, this review will advance our knowledge on the role of glucose metabolism in the comorbidity between somatic and mental illnesses.


Subject(s)
Alzheimer Disease , Obsessive-Compulsive Disorder , Humans , Executive Function , Insulin/metabolism , Prospective Studies
3.
Sci Rep ; 13(1): 16890, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803045

ABSTRACT

Cognitive flexibility involves the capability to switch between different perspectives and implement novel strategies upon changed circumstances. The Wisconsin Card Sorting Test (in humans) and the Attentional Set-Shifting Task (ASST, in rodents) evaluate individual capability to acquire a reward-associated rule and subsequently disregard it in favour of a new one. Both tasks entail consecutive stages wherein subjects discriminate between: two stimuli of a given category (simple discrimination, SD); the stimuli of SD confounded by an irrelevant stimulus of a different category (compound discrimination, CD); different stimuli belonging to the SD category (intradimensional shift, IDS); and two stimuli of the confounding category (extradimensional shift, EDS). The ASST is labour intensive, not sufficiently standardised, and prone to experimental error. Here, we tested the validity of a new, commercially available, automated version of ASST (OPERON) in two independent experiments conducted in: different mouse strains (C57BL/6 and CD1 mice) to confirm their differential cognitive capabilities (Experiment 1); and an experimental model of chronic stress (administration of corticosterone in the drinking water; Experiment 2). In both experiments, OPERON confirmed the findings obtained through the manual version. Just as in Experiment 1 both versions captured the deficit of C57BL/6 mice on the reversal of the CD (CDR), so also in Experiment 2 they provided analogous evidence that corticosterone treated mice have a remarkable impairment in the IDS. Thus, OPERON capitalises upon automated phenotyping to overcome the limitation of the manual version of the ASST while providing comparable results.


Subject(s)
Corticosterone , Executive Function , Humans , Mice , Animals , Mice, Inbred C57BL , Attention , Automation
4.
Neurosci Biobehav Rev ; 150: 105169, 2023 07.
Article in English | MEDLINE | ID: mdl-37059405

ABSTRACT

Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.


Subject(s)
Alzheimer Disease , Autism Spectrum Disorder , Diabetes Mellitus, Type 2 , Obsessive-Compulsive Disorder , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Insulin
5.
Front Cell Neurosci ; 17: 1091890, 2023.
Article in English | MEDLINE | ID: mdl-36794260

ABSTRACT

Breast milk (BM) is the optimal source of nutrition for mammals' early life. It exerts multiple benefits, including the development of cognitive capabilities and protection against several diseases like obesity and infection of the respiratory tract. However, which components of BM are involved in individual development has remained elusive. Sialylated human milk oligosaccharides (HMOs) may constitute a valid candidate, whereby they represent the principal source of sialic acid and act as building blocks for brain development. We hypothesize that the reduced availability of two HMOs, sialyl(alpha2,6)lactose (6'SL) and sialyl(alpha2,3)lactose (3'SL), may impair attention, cognitive flexibility, and memory in a preclinical model and that the exogenous supplementation of these compounds may contrast the observed deficits. We evaluated cognitive capabilities in a preclinical model exposed to maternal milk containing reduced concentrations of 6'SL and 3'SL during lactation. To modulate their concentrations, we utilized a preclinical model characterized by the absence of genes that synthesize 3'SL and 6'SL (B6.129-St3gal4 tm1.1Jxm and St6gal1tm2Jxm , double genetic deletion), producing milk lacking 3'SL and 6'SL. Then, to ensure exposure to 3'SL-6'SL-poor milk in early life, we adopted a cross-fostering protocol. The outcomes assessed in adulthood were different types of memory, attention and information processing, some of which are part of executive functions. Then, in the second study, we evaluated the long-term compensatory potential of the exogenous oral supplementation of 3'SL and 6'SL during lactation. In the first study, exposure to HMO-poor milk resulted in reduced memory and attention. Specifically, it resulted in impaired working memory in the T-maze test, in reduced spatial memory in the Barnes maze, and in impaired attentional capabilities in the Attentional set-shifting task. In the second part of the study, we did not observe any difference between experimental groups. We hypothesize that the experimental procedures utilized for the exogenous supplementation may have impacted our ability to observe the cognitive read-out in vivo. This study suggests that early life dietary sialylated HMOs play a crucial role in the development of cognitive functions. Future studies are needed to clarify if an exogenous supplementation of these oligosaccharides may compensate for these affected phenotypes.

6.
Transl Psychiatry ; 10(1): 393, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173042

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) has gained growing interest for the treatment of major depression (MDD) and treatment-resistant depression (TRD). Most knowledge on rTMS comes from human studies as preclinical application has been problematic. However, recent optimization of rTMS in animal models has laid the foundations for improved translational studies. Preclinical studies have the potential to help identify optimal stimulation protocols and shed light on new neurobiological-based rationales for rTMS use. To assess existing evidence regarding rTMS effects on depressive-like symptoms in rodent models, we conducted a comprehensive literature search in accordance with PRISMA guidelines (PROSPERO registration number: CRD42019157549). In addition, we conducted a meta-analysis to determine rTMS efficacy, performing subgroup analyses to examine the impact of different experimental models and neuromodulation parameters. Assessment of the depressive-like phenotype was quite homogeneous whilst rTMS parameters among the 23 included studies varied considerably. Most studies used a stress-induced model. Overall, results show a largely beneficial effect of active rTMS compared to sham stimulation, as reflected in the statistically significant recovery of both helplessness (SDM 1.34 [1.02;1.66]) and anhedonic (SDM 1.87 [1.02;2.72]) profiles. Improvement of the depressive-like phenotype was obtained in all included models and independently of rTMS frequency. Nonetheless, these results have limited predictive value for TRD patients as only antidepressant-sensitive models were used. Extending rTMS studies to other MDD models, corresponding to distinct endophenotypes, and to TRD models is therefore crucial to test rTMS efficacy and to develop cost-effective protocols, with the potential of yielding faster clinical responses in MDD and TRD.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Antidepressive Agents/therapeutic use , Depression/therapy , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Humans , Transcranial Magnetic Stimulation , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...