Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Neurooncol ; 167(1): 181-188, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372903

ABSTRACT

PURPOSE: Bevacizumab has evolved as an integral treatment option for patients with high-grade gliomas. Little is known about clinical risk factors that predispose patients with high-grade gliomas receiving bevacizumab to VTE or ICH. We sought to characterize the clinical risk factors associated with risk of either event. METHODS: In this multi-institutional retrospective study, we first evaluated patients with high-grade gliomas who were treated with bevacizumab at University of Texas MD Anderson Cancer Center from 2015-2021. We compared clinical and treatment-related factors among three cohorts: those who developed VTE, ICH, or neither. We further compared survival outcomes of these patients from the time of bevacizumab initiation. Then to further confirm our results in a non-cancer center hospital setting we evaluated patients from two Ascension Seton Hospitals in Austin, Texas which are affiliated with Dell Medical School at the University of Texas at Austin from 2017-2022. RESULTS: We found that the presence of cerebral macrobleeding, defined as a magnetic susceptibility of > 1 cm3 on magnetic resonance imaging, was highly associated with risk of developing ICH after initiation of bevacizumab. Development of ICH was significantly associated with poorer survival outcomes. We did not find a statistically significant effect of VTE on survival after bevacizumab initiation. CONCLUSION: In order to stratify the risk for developing ICH before the initiation of bevacizumab, we recommend to assess for the presence of cerebral macrobleeding as it is associated with ICH development.


Subject(s)
Brain Neoplasms , Glioma , Venous Thromboembolism , Humans , Bevacizumab/adverse effects , Venous Thromboembolism/chemically induced , Retrospective Studies , Glioma/complications , Glioma/drug therapy , Risk Factors , Brain Neoplasms/pathology
2.
Cancer Med ; 10(23): 8387-8394, 2021 12.
Article in English | MEDLINE | ID: mdl-34755486

ABSTRACT

BACKGROUND: Patients with high-grade glioma (HGG) face unique challenges toward the end of life (EoL), given their aggressive trajectory and neurologic deterioration. Aggressiveness of medical care at EoL has been identified as an important quality metric for oncology patients. At this time, limited data exist around the nature of EoL care of patients with HGG. METHODS: Patients with HGG and palliative care (PC) referral seen between 2010 and 2015 were identified (N = 80). Of these, N = 52 met inclusion criteria. Random selections of patients with (1) HGG not referred to PC (n = 80), and (2) non-CNS cancers with PC referral (n = 80) were identified for comparison. A composite score of aggressiveness of medical care at EoL was calculated for each patient from predetermined variables. A time of eligibility for PC was defined for each patient when predetermined criteria based on symptom burden, functional status, and prognosis were met. RESULTS: Among the patients analyzed with HGG referred to PC, 59.6% (N = 31) were referred as inpatients, and 53.8% (N = 28) were referred within the last 12 weeks of life. Patients with HGG had similar aggressiveness of care at EoL regardless of PC referral, and HGG patients had less aggressive care at EoL than patients with non-CNS cancers (p = 0.007). Care was more aggressive at EoL in HGG patients who received late versus early PC referrals (p = 0.012). Motor weakness at time of eligibility (OR = 2.55, p = 0.002) and more disease progressions (OR = 1.25, p = 0.043) were associated with less aggressive care at EoL. CONCLUSIONS: Early clinical- and disease-related features predict the aggressiveness of medical care at EoL in patients with HGG. Formal PC consultation is used infrequently and suboptimally in patients with HGG. Our data suggest that the role of PC in improving EoL outcomes in HGG warrants further evaluation.


Subject(s)
Brain Neoplasms/therapy , Glioma/therapy , Terminal Care/methods , Brain Neoplasms/pathology , Female , Glioma/pathology , Humans , Male , Middle Aged , Neoplasm Grading , Quality Indicators, Health Care
4.
Cancers (Basel) ; 13(3)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498872

ABSTRACT

Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.

5.
Neurooncol Adv ; 2(1): vdaa018, 2020.
Article in English | MEDLINE | ID: mdl-32201861

ABSTRACT

BACKGROUND: Primary central nervous system lymphoma (PCNSL) is rare and there is limited genomic and immunological information available. Incidental clinical and radiographic responses have been reported in PCNSL patients treated with immune checkpoint inhibitors. MATERIALS AND METHODS: To genetically characterize and ascertain if the majority of PCNSL patients may potentially benefit from immune checkpoint inhibitors, we profiled 48 subjects with PCNSL from 2013 to 2018 with (1) next-generation sequencing to detect mutations, gene amplifications, and microsatellite instability (MSI); (2) RNA sequencing to detect gene fusions; and (3) immunohistochemistry to ascertain PD-1 and PD-L1 expression. Tumor mutational burden (TMB) was calculated using somatic nonsynonymous missense mutations. RESULTS: High PD-L1 expression (>5% staining) was seen in 18 patients (37.5%), and intermediate expression (1-5% staining) was noted in 14 patients (29.2%). Sixteen patients (33.3%) lacked PD-L1 expression. PD-1 expression (>1 cell/high-power field) was seen in 12/14 tumors (85.7%), uncorrelated with PD-L1 expression. TMB of greater than or equal to 5 mutations per megabase (mt/Mb) occurred in 41/42 tumors, with 19% (n = 8) exhibiting high TMB (≥17 mt/Mb), 71.4% (n = 30) exhibiting intermediate TMB (7-16 mt/Mb), and 9.5% (n = 4) exhibiting low TMB (≤6 mt/Mb). No samples had MSI. Twenty-six genes showed mutations, most frequently in MYD88 (34/42, 81%), CD79B (23/42, 55%), and PIM1 (23/42, 55%). Among 7 cases tested with RNA sequencing, an ETV6-IGH fusion was found. Overall, 18/48 samples expressed high PD-L1 and 38/42 samples expressed intermediate to high TMB. CONCLUSIONS: Based on TMB biomarker expression, over 90% of PCNSL patients may benefit from the use of immune checkpoint inhibitors.

6.
Int J Mol Sci ; 22(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396284

ABSTRACT

Glioblastoma is the most common malignant primary brain tumor in adults and is almost invariably fatal. Despite our growing understanding of the various mechanisms underlying treatment failure, the standard-of-care therapy has not changed over the last two decades, signifying a great unmet need. The challenges of treating glioblastoma are many and include inadequate drug or agent delivery across the blood-brain barrier, abundant intra- and intertumoral heterogeneity, redundant signaling pathways, and an immunosuppressive microenvironment. Here, we review the innate and adaptive molecular mechanisms underlying glioblastoma's treatment resistance, emphasizing the intrinsic challenges therapeutic interventions must overcome-namely, the blood-brain barrier, tumoral heterogeneity, and microenvironment-and the mechanisms of resistance to conventional treatments, targeted therapy, and immunotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Molecular Targeted Therapy , Tumor Microenvironment/drug effects , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Humans
7.
J Biol Chem ; 295(1): 191-211, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31776189

ABSTRACT

Epithelial adherens junctions (AJs) and tight junctions (TJs) undergo disassembly and reassembly during morphogenesis and pathological states. The membrane-cytoskeleton interface plays a crucial role in junctional reorganization. Protein 4.1R (4.1R), expressed as a diverse array of spliceoforms, has been implicated in linking the AJ and TJ complex to the cytoskeleton. However, which specific 4.1 isoform(s) participate and the mechanisms involved in junctional stability or remodeling remain unclear. We now describe a role for epithelial-specific isoforms containing exon 17b and excluding exon 16 4.1R (4.1R+17b) in AJs. 4.1R+17b is exclusively co-localized with the AJs. 4.1R+17b binds to the armadillo repeats 1-2 of ß-catenin via its membrane-binding domain. This complex is linked to the actin cytoskeleton via a bispecific interaction with an exon 17b-encoded peptide. Exon 17b peptides also promote fodrin-actin complex formation. Expression of 4.1R+17b forms does not disrupt the junctional cytoskeleton and AJs during the steady-state or calcium-dependent AJ reassembly. Overexpression of 4.1R-17b forms, which displace the endogenous 4.1R+17b forms at the AJs, as well as depletion of the 4.1R+17b forms both decrease junctional actin and attenuate the recruitment of spectrin to the AJs and also reduce E-cadherin during the initial junctional formation of the AJ reassembly process. Expressing 4.1R+17b forms in depleted cells rescues junctional localization of actin, spectrin, and E-cadherin assembly at the AJs. Together, our results identify a critical role for 4.1R+17b forms in AJ assembly and offer additional insights into the spectrin-actin-4.1R-based membrane skeleton as an emerging regulator of epithelial integrity and remodeling.


Subject(s)
Adherens Junctions/metabolism , Cytoskeletal Proteins/metabolism , Membrane Proteins/metabolism , Actins/metabolism , Alternative Splicing , Animals , Binding Sites , Cadherins/metabolism , Calcium/metabolism , Carrier Proteins/metabolism , Cytoskeletal Proteins/genetics , Dogs , Humans , Madin Darby Canine Kidney Cells , Membrane Proteins/genetics , Microfilament Proteins/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Spectrin/metabolism , beta Catenin/chemistry , beta Catenin/metabolism
8.
Mol Cell Biol ; 37(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28193846

ABSTRACT

Exon 16 of protein 4.1R encodes a spectrin/actin-binding peptide critical for erythrocyte membrane stability. Its expression during erythroid differentiation is regulated by alternative pre-mRNA splicing. A UUUUCCCCCC motif situated between the branch point and the 3' splice site is crucial for inclusion. We show that the UUUU region and the last three C residues in this motif are necessary for the binding of splicing factors TIA1 and Pcbp1 and that these proteins appear to act in a collaborative manner to enhance exon 16 inclusion. This element also activates an internal exon when placed in a corresponding intronic position in a heterologous reporter. The impact of these two factors is further enhanced by high levels of RBM39, whose expression rises during erythroid differentiation as exon 16 inclusion increases. TIA1 and Pcbp1 associate in a complex containing RBM39, which interacts with U2AF65 and SF3b155 and promotes U2 snRNP recruitment to the branch point. Our results provide a mechanism for exon 16 3' splice site activation in which a coordinated effort among TIA1, Pcbp1, and RBM39 stabilizes or increases U2 snRNP recruitment, enhances spliceosome A complex formation, and facilitates exon definition through RBM39-mediated splicing regulation.


Subject(s)
Alternative Splicing/genetics , Cytoskeletal Proteins/genetics , Erythropoiesis/physiology , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Membrane Proteins/genetics , Nuclear Proteins/metabolism , Poly(A)-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Binding Sites/genetics , Cell Line, Tumor , DNA-Binding Proteins , Erythropoiesis/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Phosphoproteins/metabolism , Protein Binding/genetics , RNA Splicing Factors/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Spliceosomes/metabolism , Splicing Factor U2AF/metabolism , T-Cell Intracellular Antigen-1
9.
Mol Cell Biol ; 32(2): 513-26, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22083953

ABSTRACT

The erythroid differentiation-specific splicing switch of protein 4.1R exon 16, which encodes a spectrin/actin-binding peptide critical for erythrocyte membrane stability, is modulated by the differentiation-induced splicing factor RBFOX2. We have now characterized the mechanism by which RBFOX2 regulates exon 16 splicing through the downstream intronic element UGCAUG. Exon 16 possesses a weak 5' splice site (GAG/GTTTGT), which when strengthened to a consensus sequence (GAG/GTAAGT) leads to near-total exon 16 inclusion. Impaired RBFOX2 binding reduces exon 16 inclusion in the context of the native weak 5' splice site, but not the engineered strong 5' splice site, implying that RBFOX2 achieves its effect by promoting utilization of the weak 5' splice site. We further demonstrate that RBFOX2 increases U1 snRNP recruitment to the weak 5' splice site through direct interaction between its C-terminal domain (CTD) and the zinc finger region of U1C and that the CTD is required for the effect of RBFOX2 on exon 16 splicing. Our data suggest a novel mechanism for exon 16 5' splice site activation in which the binding of RBFOX2 to downstream intronic splicing enhancers stabilizes the pre-mRNA-U1 snRNP complex through interactions with U1C.


Subject(s)
Cytoskeletal Proteins/genetics , Exons , Membrane Proteins/genetics , RNA-Binding Proteins/analysis , RNA-Binding Proteins/metabolism , Repressor Proteins/analysis , Repressor Proteins/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Base Sequence , HEK293 Cells , HeLa Cells , Humans , Protein Structure, Tertiary , RNA Splicing , RNA Splicing Factors , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , Zinc Fingers
10.
Blood ; 114(19): 4233-42, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19729518

ABSTRACT

The tightly regulated production of distinct erythrocyte protein 4.1R isoforms involves differential splicing of 3 mutually exclusive first exons (1A, 1B, 1C) to the alternative 3' splice sites (ss) of exon 2'/2. Here, we demonstrate that exon 1 and 2'/2 splicing diversity is regulated by a transcription-coupled splicing mechanism. We also implicate distinctive regulatory elements that promote the splicing of exon 1A to the distal 3' ss and exon 1B to the proximal 3' ss in murine erythroleukemia cells. A hybrid minigene driven by cytomegalovirus promoter mimicked 1B-promoter-driven splicing patterns but differed from 1A-promoter-driven splicing patterns, suggesting that promoter identity affects exon 2'/2 splicing. Furthermore, splicing factor SF2/ASF ultraviolet (UV) cross-linked to the exon 2'/2 junction CAGAGAA, a sequence that overlaps the distal U2AF(35)-binding 3' ss. Consequently, depletion of SF2/ASF allowed exon 1B to splice to the distal 3' ss but had no effect on exon 1A splicing. These findings identify for the first time that an SF2/ASF binding site also can serve as a 3' ss in a transcript-dependent manner. Taken together, our results suggest that 4.1R gene expression involves transcriptional regulation coupled with a complex splicing regulatory network.


Subject(s)
Alternative Splicing , Blood Proteins/genetics , Cytoskeletal Proteins/genetics , Membrane Proteins/genetics , 5' Untranslated Regions , Animals , Base Sequence , Binding Sites/genetics , Blood Proteins/biosynthesis , Cell Line , Cytoskeletal Proteins/biosynthesis , DNA Polymerase II/metabolism , DNA Primers/genetics , Exons , Humans , Leukemia, Erythroblastic, Acute/genetics , Leukemia, Erythroblastic, Acute/metabolism , Membrane Proteins/biosynthesis , Mice , Microfilament Proteins , Models, Genetic , Molecular Sequence Data , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Serine-Arginine Splicing Factors , Splicing Factor U2AF , Tissue Distribution , Transcription, Genetic , Transcriptional Activation , Tumor Cells, Cultured
11.
Mol Cell Biol ; 28(19): 5924-36, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18663000

ABSTRACT

RBM25 has been shown to associate with splicing cofactors SRm160/300 and assembled splicing complexes, but little is known about its splicing regulation. Here, we characterize the functional role of RBM25 in alternative pre-mRNA splicing. Increased RBM25 expression correlated with increased apoptosis and specifically affected the expression of Bcl-x isoforms. RBM25 stimulated proapoptotic Bcl-x(S) 5' splice site (5' ss) selection in a dose-dependent manner, whereas its depletion caused the accumulation of antiapoptotic Bcl-x(L). Furthermore, RBM25 specifically bound to Bcl-x RNA through a CGGGCA sequence located within exon 2. Mutation in this element abolished the ability of RBM25 to enhance Bcl-x(S) 5' ss selection, leading to decreased Bcl-x(S) isoform expression. Binding of RBM25 was shown to promote the recruitment of the U1 small nuclear ribonucleoprotein particle (snRNP) to the weak 5' ss; however, it was not required when a strong consensus 5' ss was present. In support of a role for RBM25 in modulating the selection of a 5' ss, we demonstrated that RBM25 associated selectively with the human homolog of yeast U1 snRNP-associated factor hLuc7A. These data suggest a novel mode for Bcl-x(S) 5' ss activation in which binding of RBM25 with exonic element CGGGCA may stabilize the pre-mRNA-U1 snRNP through interactions with hLuc7A.


Subject(s)
Alternative Splicing , RNA Splice Sites , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , bcl-X Protein/genetics , Apoptosis , Cell Line , Exons , Humans , Mutation , Nuclear Proteins/metabolism , Protein Isoforms/genetics , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...