Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Type of study
Publication year range
1.
ACS Nano ; 18(4): 3214-3233, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38215338

ABSTRACT

Development of effective vaccines for infectious diseases has been one of the most successful global health interventions in history. Though, while ideal subunit vaccines strongly rely on antigen and adjuvant(s) selection, the mode and time scale of exposure to the immune system has often been overlooked. Unfortunately, poor control over the delivery of many adjuvants, which play a key role in enhancing the quality and potency of immune responses, can limit their efficacy and cause off-target toxicities. There is a critical need for improved adjuvant delivery technologies to enhance their efficacy and boost vaccine performance. Nanoparticles have been shown to be ideal carriers for improving antigen delivery due to their shape and size, which mimic viral structures but have been generally less explored for adjuvant delivery. Here, we describe the design of self-assembled poly(ethylene glycol)-b-poly(lactic acid) nanoparticles decorated with CpG, a potent TLR9 agonist, to increase adjuvanticity in COVID-19 vaccines. By controlling the surface density of CpG, we show that intermediate valency is a key factor for TLR9 activation of immune cells. When delivered with the SARS-CoV-2 spike protein, CpG nanoparticle (CpG-NP) adjuvant greatly improves the magnitude and duration of antibody responses when compared to soluble CpG, and results in overall greater breadth of immunity against variants of concern. Moreover, encapsulation of CpG-NP into injectable polymeric-nanoparticle (PNP) hydrogels enhances the spatiotemporal control over codelivery of CpG-NP adjuvant and spike protein antigen such that a single immunization of hydrogel-based vaccines generates humoral responses comparable to those of a typical prime-boost regimen of soluble vaccines. These delivery technologies can potentially reduce the costs and burden of clinical vaccination, both of which are key elements in fighting a pandemic.


Subject(s)
COVID-19 , Nanoparticles , Spike Glycoprotein, Coronavirus , Vaccines , Humans , COVID-19 Vaccines , Toll-Like Receptor 9/agonists , COVID-19/prevention & control , SARS-CoV-2 , Adjuvants, Immunologic , Antigens , Nanoparticles/chemistry , Antibodies, Viral
2.
bioRxiv ; 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37577608

ABSTRACT

Over the past few decades, the development of potent and safe immune-activating adjuvant technologies has become the heart of intensive research in the constant fight against highly mutative and immune evasive viruses such as influenza, SARS-CoV-2, and HIV. Herein, we developed a highly modular saponin-based nanoparticle platform incorporating toll-like receptor agonists (TLRas) including TLR1/2a, TLR4a, TLR7/8a adjuvants and their mixtures. These various TLRa-SNP adjuvant constructs induce unique acute cytokine and immune-signaling profiles, leading to specific Th-responses that could be of interest depending on the target disease for prevention. In a murine vaccine study, the adjuvants greatly improved the potency, durability, breadth, and neutralization of both COVID-19 and HIV vaccine candidates, suggesting the potential broad application of these adjuvant constructs to a range of different antigens. Overall, this work demonstrates a modular TLRa-SNP adjuvant platform which could improve the design of vaccines for and dramatically impact modern vaccine development.

3.
Adv Healthc Mater ; 12(28): e2301495, 2023 11.
Article in English | MEDLINE | ID: mdl-37278391

ABSTRACT

Most vaccines require several immunizations to induce robust immunity, and indeed, most SARS-CoV-2 vaccines require an initial two-shot regimen followed by several boosters to maintain efficacy. Such a complex series of immunizations unfortunately increases the cost and complexity of populations-scale vaccination and reduces overall compliance and vaccination rate. In a rapidly evolving pandemic affected by the spread of immune-escaping variants, there is an urgent need to develop vaccines capable of providing robust and durable immunity. In this work, a single immunization SARS-CoV-2 subunit vaccine is developed that can rapidly generate potent, broad, and durable humoral immunity. Injectable polymer-nanoparticle (PNP) hydrogels are leveraged as a depot technology for the sustained delivery of a nanoparticle antigen (RND-NP) displaying multiple copies of the SARS-CoV-2 receptor-binding domain (RBD) and potent adjuvants including CpG and 3M-052. Compared to a clinically relevant prime-boost regimen with soluble vaccines formulated with CpG/alum or 3M-052/alum adjuvants, PNP hydrogel vaccines more rapidly generated higher, broader, and more durable antibody responses. Additionally, these single-immunization hydrogel-based vaccines elicit potent and consistent neutralizing responses. Overall, it is shown that PNP hydrogels elicit improved anti-COVID immune responses with only a single administration, demonstrating their potential as critical technologies to enhance overall pandemic readiness.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , Hydrogels , COVID-19/prevention & control , Vaccination , Immunization , Vaccines, Subunit , Antibodies, Viral , Immunity, Humoral
4.
bioRxiv ; 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36993717

ABSTRACT

Equitable global access to vaccines requires we overcome challenges associated with complex immunization schedules and their associated economic burdens that hinder delivery in under resourced environments. The rabies vaccine, for example, requires multiple immunizations for effective protection and each dose is cost prohibitive, and therefore inaccessibility disproportionately impacts low- and middle-income countries. In this work we developed an injectable hydrogel depot technology for sustained delivery of commercial inactivated rabies virus vaccines. In a mouse model, we showed that a single immunization of a hydrogel-based rabies vaccine elicited comparable antibody titers to a standard prime-boost bolus regimen of a commercial rabies vaccine, despite these hydrogel vaccines comprising only half of the total dose delivered in the bolus control. Moreover, these hydrogel-based vaccines elicited similar antigen-specific T-cell responses and neutralizing antibody responses compared to the bolus vaccine. Notably, we demonstrated that while addition of a potent clinical TLR4 agonist adjuvant to the gels slightly improved binding antibody responses, inclusion of this adjuvant to the inactivated virion vaccine was detrimental to neutralizing responses. Taken together, these results suggest that these hydrogels can enable an effective regimen compression and dosesparing strategy for improving global access to vaccines.

5.
Adv Drug Deliv Rev ; 187: 114401, 2022 08.
Article in English | MEDLINE | ID: mdl-35750115

ABSTRACT

The immune system is one of the most important, complex biological networks regulating and protecting human health. Its precise modulation can prevent deadly infections and fight cancer. Accordingly, prophylactic vaccines and cancer immunotherapies are some of the most powerful technologies to protect against potential dangers through training of the immune system. Upon immunization, activation and maturation of B and T cells of the adaptive immune system are necessary for development of proper humoral and cellular protection. Yet, the exquisite organization of the immune system requires spatiotemporal control over the exposure of immunomodulatory signals. For example, while the human immune system has evolved to develop immunity to natural pathogenic infections that often last for weeks, current prophylactic vaccination technologies only expose the immune system to immunomodulatory signals for hours to days. It has become clear that leveraging sustained release technologies to prolong immunogen and adjuvant exposure can increase the potency, durability, and quality of adaptive immune responses. Over the past several years, tremendous breakthroughs have been made in the design of novel biomaterials such as nanoparticles, microparticles, hydrogels, and microneedles that can precisely control the presentation of immunomodulatory signals to the immune system. In this review, we discuss relevant sustained release strategies and their corresponding benefits to cellular and humoral responses.


Subject(s)
Immunity, Humoral , Neoplasms , Delayed-Action Preparations , Humans , Immunotherapy , T-Lymphocytes
6.
Sci Adv ; 8(14): eabn8264, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35394838

ABSTRACT

Adoptive cell therapy (ACT) has proven to be highly effective in treating blood cancers, but traditional approaches to ACT are poorly effective in treating solid tumors observed clinically. Novel delivery methods for therapeutic cells have shown promise for treatment of solid tumors when compared with standard intravenous administration methods, but the few reported approaches leverage biomaterials that are complex to manufacture and have primarily demonstrated applicability following tumor resection or in immune-privileged tissues. Here, we engineer simple-to-implement injectable hydrogels for the controlled co-delivery of CAR-T cells and stimulatory cytokines that improve treatment of solid tumors. The unique architecture of this material simultaneously inhibits passive diffusion of entrapped cytokines and permits active motility of entrapped cells to enable long-term retention, viability, and activation of CAR-T cells. The generation of a transient inflammatory niche following administration affords sustained exposure of CAR-T cells, induces a tumor-reactive CAR-T phenotype, and improves efficacy of treatment.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Cytokines , Humans , Hydrogels , Immunotherapy, Adoptive/methods , Neoplasms/pathology , Neoplasms/therapy , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/pathology
7.
Nat Rev Mater ; 7(3): 174-195, 2022.
Article in English | MEDLINE | ID: mdl-34603749

ABSTRACT

Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.

8.
Adv Mater ; 33(51): e2104362, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34651342

ABSTRACT

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum are found unable to elicit neutralizing responses following a prime-boost immunization. Here, it has been shown that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.


Subject(s)
Antibodies, Neutralizing/immunology , Hydrogels/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/virology , CpG Islands/genetics , Female , Humans , Immunity, Humoral , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Polymers/chemistry , Protein Domains/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/isolation & purification , Vaccines, Subunit/chemistry , Vaccines, Subunit/metabolism
9.
Biomacromolecules ; 22(8): 3386-3395, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34213889

ABSTRACT

There are 150 million people with diabetes worldwide who require insulin replacement therapy, and the prevalence of diabetes is rising the fastest in middle- and low-income countries. The current formulations require costly refrigerated transport and storage to prevent loss of insulin integrity. This study shows the development of simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks. Further, when these copolymers are added to Humulin R (Eli Lilly) in original commercial packaging, they prevent insulin aggregation for up to 4 days at 50 °C compared to less than 1 day for Humulin R alone. These copolymers demonstrate promise as simple formulation additives to increase the cold chain resilience of commercial insulin formulations, thereby expanding global access to these critical drugs for treatment of diabetes.


Subject(s)
Diabetes Mellitus , Insulin , Excipients , Humans , Insulin, Regular, Human , Refrigeration
10.
J Biomed Mater Res A ; 109(11): 2173-2186, 2021 11.
Article in English | MEDLINE | ID: mdl-33955657

ABSTRACT

Vaccines are critical for combating infectious diseases across the globe. Influenza, for example, kills roughly 500,000 people annually worldwide, despite annual vaccination campaigns. Efficacious vaccines must elicit a robust and durable antibody response, and poor efficacy often arises from inappropriate temporal control over antigen and adjuvant presentation to the immune system. In this work, we sought to exploit the immune system's natural response to extended pathogen exposure during infection by designing an easily administered slow-delivery influenza vaccine platform. We utilized an injectable and self-healing polymer-nanoparticle (PNP) hydrogel platform to prolong the co-delivery of vaccine components to the immune system. We demonstrated that these hydrogels exhibit unique dynamic physical characteristics whereby physicochemically distinct influenza hemagglutinin antigen and a toll-like receptor 7/8 agonist adjuvant could be co-delivered over prolonged timeframes that were tunable through simple alteration of the gel formulation. We show a relationship between hydrogel physical properties and the resulting immune response to immunization. When administered in mice, hydrogel-based vaccines demonstrated enhancements in the magnitude and duration of humoral immune responses compared to alum, a widely used clinical adjuvant system. We found stiffer hydrogel formulations exhibited slower release and resulted in the greatest improvements to the antibody response while also enabling significant adjuvant dose sparing. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of influenza subunit vaccines.


Subject(s)
Adjuvants, Immunologic , Delayed-Action Preparations , Hydrogels , Immunity, Humoral , Influenza Vaccines , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Mice , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology , Vaccines, Subunit/pharmacology
11.
bioRxiv ; 2021 Aug 29.
Article in English | MEDLINE | ID: mdl-33821276

ABSTRACT

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, we found that clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum were unable to elicit neutralizing responses following a prime-boost immunization. Here we show that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.

12.
Nano Lett ; 20(10): 6957-6965, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32852220

ABSTRACT

The separation and purification of therapeutic proteins from their biological resources pose a great limitation for industrial manufacturing of biologics in an efficient and cost-effective manner. We report here a supramolecular polymeric system that can undergo multiple reversible processes for efficient capture, precipitation, and recovery of monoclonal antibodies (mAbs). These supramolecular polymers, namely immunofibers (IFs), are formed by coassembly of a mAb-binding peptide amphiphile with a rationally designed filler molecule of varying stoichiometric ratios. Under the optimized conditions, IFs can specifically capture mAbs with a precipitation yield greater than 99%, leading to an overall mAb recovery yield of 94%. We also demonstrated the feasibility of capturing and recovering two mAbs from clarified cell culture harvest. These results showcase the promising potential of peptide-based supramolecular polymers as reversible affinity precipitants for mAb purification.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents, Immunological , Peptides , Polymers , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...