Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int Immunopharmacol ; 132: 111993, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565044

ABSTRACT

OBJECTIVE: Psoriasis is an immune-mediated skin disease where the IL-17 signaling pathway plays a crucial role in its development. Chronic circadian rhythm disorder in psoriasis pathogenesis is gaining more attention. The relationship between IL and 17 signaling pathway and skin clock genes remains poorly understood. METHODS: GSE121212 with psoriatic lesion and healthy controls was used as the exploration cohort for searching analysis. Datasets GSE54456, GSE13355, GSE14905, GSE117239, GSE51440, and GSE137218 were applied to validation analysis. Single-cell RNA sequencing (scRNA-seq) dataset GSE173706 was used to explore the F3 expression and related pathway activities in single-cell levels. Through intersecting with high-expression DEGs, F3 was selected as the signature skin circadian gene in psoriasis for further investigation. Functional analyses, including correlation analyses, prediction of transcription factors, protein-protein interaction, and single gene GSEA to explore the potential roles of F3. ssGSEA algorithm was performed to uncover the immune-related characteristics of psoriasis. We further explored F3 expression in the specific cell population in scRNA-seq dataset, besides this, AUCell analysis was performed to explore the pathway activities and the results were further compared between the specific cell cluster. Immunohistochemistry experiment, RT-qPCR was used to validate the location and expression of F3, small interfering RNA (siRNA) transfection experiment in HaCaT, and transcriptome sequencing analysis were applied to explore the potential function of F3. RESULTS: F3 was significantly down-regulated in psoriasis and interacted with IL-17 signaling pathway. Low expression of F3 could upregulate the receptor of JAK-STAT signaling, thereby promoting keratinocyte inflammation. CONCLUSION: Our research revealed a bidirectional link between the skin circadian gene F3 and the IL-17 signaling pathway in psoriasis, suggesting that F3 may interact with the IL-17 pathway by activating JAK-STAT within keratinocytes and inducing abnormal intracellular inflammation.


Subject(s)
Interleukin-17 , Keratinocytes , Psoriasis , Signal Transduction , Skin , Psoriasis/genetics , Psoriasis/immunology , Humans , Interleukin-17/metabolism , Interleukin-17/genetics , Keratinocytes/metabolism , Keratinocytes/immunology , Skin/pathology , Skin/immunology , Skin/metabolism , Circadian Clocks/genetics , Biomarkers/metabolism , Severity of Illness Index , HaCaT Cells
2.
J Inflamm Res ; 17: 1039-1055, 2024.
Article in English | MEDLINE | ID: mdl-38375022

ABSTRACT

Purpose: Guselkumab is a highly effective biologic agent for treating psoriasis. This study aimed to explore potential transcription factors involved in psoriasis pathogenesis and response to guselkumab treatment, aiming to provide new therapeutic strategies for psoriasis. Patients and Methods: We analyzed gene expression and single-cell RNA-seq data from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) that upregulated in psoriasis and downregulated after guselkumab treatment were subjected to enrichment analyses. Single-cell regulatory network inference and clustering (SENIC) and regulon module analyses identified different regulon activities between the lesion and non-lesion skin of psoriasis. Cell-cell communication analysis revealed interactions among specific cell clusters. Transcription factor (TF) regulons were identified from the guselkumab-specific regulon network. Gene set enrichment analysis (GSEA) confirmed the IRF7 regulon in the validation cohort. Finally, the expression level of IRF7 was identified in plaque psoriasis before and after 12 weeks of guselkumab therapy by immunohistochemical experiment. Results: 799 DEGs were downregulated after guselkumab treatment. Enrichment analyses highlighted the interleukin-17 (IL-17) pathway in this gene set. The M2 module exhibited the primary difference in regulon activity. Strong cell-cell interactions were observed between keratinocytes and immune cells. IRF7 regulon had significant roles in psoriasis and treatment response, as validated by GSEA analysis using the IL-17 signaling pathway as a reference. The immunohistochemical analysis unveiled substantial differences in the expression levels of IRF7 in psoriatic skin samples before and after 12 weeks of guselkumab treatment. Conclusion: IRF7 may be the key player in psoriasis pathogenesis and the therapeutic process involving guselkumab. Targeting IRF7 might offer new therapeutic strategies for psoriasis.

3.
Front Immunol ; 12: 764384, 2021.
Article in English | MEDLINE | ID: mdl-34733291

ABSTRACT

Psoriasis is a multifactorial immune-mediated disease. The highly effective and eligible treatment for psoriasis is limited, for its specific pathogenesis is incompletely elucidated. Skin microbiota is a research hotspot in the pathogenesis of immune-mediated inflammatory skin diseases nowadays, and it may have significant involvement in the provocation or exacerbation of psoriasis with broadly applicable prospects. It is postulated that skin microbiota alternation may interplay with innate immunity such as antimicrobial peptides and Toll-like receptors to stimulate T-cell populations, resulting in immune cascade responses and ultimately psoriasis. Achieving a thorough understanding of its underlying pathogenesis is crucial. Herein, we discuss the potential immunopathogenesis of psoriasis from the aspect of skin microbiota in an attempt to yield insights for novel therapeutic and preventive modalities for psoriasis.


Subject(s)
Dysbiosis/immunology , Microbiota/immunology , Psoriasis/immunology , Skin/immunology , Dysbiosis/pathology , Humans , Psoriasis/pathology , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...