Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 236: 113803, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367289

ABSTRACT

The core to the treatment of gout is the elimination of pathologic crystal, monosodium urate monohydrate (MSUM). The primary treatment available is to gradually dissolve the "culprit crystals" by lowering the blood uric acid concentration with medications, which often takes a long time and in severe cases must still be treated surgically. Herein, we developed a dynamic bionic platform based on a hydrogel composite membrane (HCM) to screen the direct facilitated solubilization of MSUM crystals by small organic molecules in bionic saturated, or even supersaturated, solutions. The customized and biologically safe (NAGA/PEGDA/NIPAM) HCM, which is consistent with the main amino acid composition of articular cartilage, well mimics the entire process of organic molecules leading to the dissolution of MSUM crystals in the joint system. With the verifications of this platform, it is shown that l-aspartic acid (ASP) significantly promotes the dissolution of MSUM crystals not only in saturated but also in supersaturated solutions. Furthermore, a novel mechanism called "crane effect" was used to explain this "dissolution effect" of ASP on MSUM, which stems from the ability of ASP to lock onto the surface of MSUM crystals through hydrogen bonding by virtue of its two carboxyl groups, and simultaneously its amino group lifts the uric acid molecules from the surface of MSUM crystals by virtue of interactions of hydrogen bonding. The results of bulk crystallization, scanning electron microscopy (SEM), powder X-diffraction (PXRD), and density-functional theory (DFT) studies are quantitatively consistent with this hypothetical "crane effect" mechanism. Hence, this HCM-based functional platform could provide entirely novel ideas and methods for drug design and screening for the treatment of pathological crystal diseases of gout.


Subject(s)
Gout , Uric Acid , Humans , Uric Acid/chemistry , Bionics , Gout/drug therapy , Gout/metabolism , Crystallization , Hydrogels
2.
RSC Adv ; 12(35): 22574-22580, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36106008

ABSTRACT

The first gout attack in a hyperuricaemic patient may be regarded as a nucleation event which is caused by monosodium urate monohydrate (MSUM) deposition in the synovial fluid. The effect of Tailor-Made Inhibition (TMI) may be effective as drugs for the prevention of aberrant nucleation and crystallization. Therefore, the understanding of the underlying mechanisms in inhibiting the MSUM nucleation by TMI has proven to be of great significance. Yet most of the published studies about nucleation inhibition have tended to focus on simpler molecular models with a hydrogen-bonded acceptor and donor, which may be not suitable for the uric acid molecule with multiple hydrogen-bonded acceptors and donors under physiological conditions. Herein, the mechanisms of nucleation inhibition of MSUM were explored in a simulated biological environment (0.15 M Na+ and pH 7.40) in the presence and absence of TMI. And the evidence of nucleation inhibition by TMI in solution and the amorphous form of MSUM was investigated by HNMR, IR, Raman, PXRD, Dynamic light scattering (DLS), induction time measurements, and density functional theory (DFT) calculations. Results showed that the inhibition comes from a combination of kinetic and thermodynamic effects, with an impact of kinetics as the TMI inhibition effects far exceeded what could be accounted for by changes in usual factors of classical nucleation theory. The data demonstrated that the complex between urate and TMI disturbed the formation of two-dimensional sheets of sodion and purine rings parallel to the (011) plane and further impeded the formation of a three-dimensional structure with aromatic stacking interactions in solution. To our knowledge, the nucleation inhibition of TMI is achieved by suppressing interplanar stacking, which is a mechanism proposed for the first time.

3.
Org Lett ; 24(11): 2099-2103, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35289179

ABSTRACT

The vinyl-substituted oxyallyl carbonates were exploited as a new C,O-dipole for enantioselective Pd-catalyzed (3+2) cycloaddition. The corresponding oxyallyl-Pd species was weakly nucleophilic to react with activated carbonyl compounds, affording multisubstituted and enantioenriched oxazolidinones and 1,3-dioxolanes with a high degree of chemo- and stereoselectivity. The synthetic transformations of oxazolidinone product were carried out to build enantioenriched α-chiral aminoketone and epoxy derivatives.

4.
J Pharm Biomed Anal ; 179: 113028, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31835126

ABSTRACT

Members of the genus Rhodiola L. have been widely used in Tibetan medicines for preventing and treating acute mountain sickness (AMS) for a long time. However, the pharmacological mechanisms of these medicines in treating AMS remain unclear. To address this problem, an integrative method combining ultra-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS)analysis and network pharmacology was employed. First, the chemical profiles of Dazhu Hongjingtian (DZ, a Chinese medicine preparation composed of R. kirilowii (Regel) Maxim) were identified or tentatively characterized. Second, the targets of DZ were predicted using the SwissTargetPrediction and STITCH databases; the targets of AMS were also collected from the Drugbank and TTD databases. Then, networks between targets and compounds or diseases were constructed by Cytoscape 3.6.1. Third, GO and pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). As a result, 40 ingredients of 53 compounds in DZ might be biologically active. These activities were related to the regulatory effects of the ingredients on 68 significant signaling pathways, such as the inflammation pathway, apoptosis pathway, HIF-1 signaling pathway, and others, by targeting 33 proteins, including PTGS2 and PTGS1, ALOX5 and ALOX15, BCL2 and BCL2L1, the protein kinase C (PKC) family and HIF1A, among others.


Subject(s)
Altitude Sickness/drug therapy , Drugs, Chinese Herbal/chemistry , Rhodiola/chemistry , Altitude Sickness/physiopathology , Chromatography, High Pressure Liquid/methods , Databases, Factual , Drugs, Chinese Herbal/pharmacology , Tandem Mass Spectrometry/methods
5.
Cell Commun Signal ; 17(1): 149, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31744518

ABSTRACT

BACKGROUND: In recent years, copper complexes have gradually become the focus of potential anticancer drugs due to their available redox properties and low toxicity. In this study, a novel mitochondrion-targeting copper (II) complex, [Cu (ttpy-tpp)Br2] Br (simplified as CTB), is first synthesized by our group. CTB with tri-phenyl-phosphine (TPP), a targeting and lipophilic group, can cross the cytoplasmic and mitochondrial membranes of tumor cells. The present study aims to investigate how CTB affects mitochondrial functions and exerts its anti-tumor activity in hepatoma cells. METHODS: Multiple molecular experiments including Flow cytometry, Western blot, Immunofluorescence, Tracker staining, Transmission Electron Microscopy and Molecular docking simulation were used to elucidate the underlying mechanisms. Human hepatoma cells were subcutaneously injected into right armpit of male nude mice for evaluating the effects of CTB in vivo. RESULTS: CTB induced apoptosis via collapse of mitochondrial membrane potential (MMP), ROS production, Bax mitochondrial aggregation as well as cytochrome c release, indicating that CTB-induced apoptosis was associated with mitochondrial pathway in human hepatoma cells. Mechanistic study revealed that ROS-related mitochondrial translocation of p53 was involved in CTB-mediated apoptosis. Simultaneously, elevated mitochondrial Drp1 levels were also observed, and interruption of Drp1 activation played critical role in p53-dependent apoptosis. CTB also strongly suppressed the growth of liver cancer xenografts in vivo. CONCLUSION: In human hepatoma cells, CTB primarily induces mitochondrial dysfunction and promotes accumulation of ROS, leading to activation of Drp1. These stimulation signals accelerate mitochondrial accumulation of p53 and lead to the eventual apoptosis. Our research shows that CTB merits further evaluation as a chemotherapeutic agent for the treatment of Hepatocellular carcinoma (HCC).


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Dynamins/metabolism , Liver Neoplasms/drug therapy , Organometallic Compounds/pharmacology , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Copper/chemistry , Copper/pharmacology , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondria/drug effects , Mitochondria/metabolism , Organometallic Compounds/chemistry , Phosphines/chemistry , Phosphines/pharmacology , Signal Transduction/drug effects , Terphenyl Compounds/chemistry , Terphenyl Compounds/pharmacology , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism
6.
Materials (Basel) ; 9(10)2016 Sep 30.
Article in English | MEDLINE | ID: mdl-28773936

ABSTRACT

Nowadays, there is a growing interest to develop biodegradable functional composite materials for food packaging and biomedicine applications from renewable sources. Some composite films were prepared by the casting method using chitosan (CS) and agarose (AG) in different mass ratios. The composite films were analyzed for physical-chemical-mechanical properties including tensile strength (TS), elongation-at-break (EB), water vapor transmission rate (WVTR), swelling ratio, Fourier-transform infrared spectroscopy, and morphology observations. The antibacterial properties of the composite films were also evaluated. The obtained results reveal that an addition of AG in varied proportions to a CS solution leads to an enhancement of the composite film's tensile strength, elongation-at-break, and water vapor transmission rate. The composite film with an agarose mass concentration of 60% was of the highest water uptake capacity. These improvements can be explained by the chemical structures of the new composite films, which contain hydrogen bonding interactions between the chitosan and agarose as shown by Fourier-transform infrared spectroscopy (FTIR) analysis and the micro-pore structures as observed with optical microscopes and scanning electron microscopy (SEM). The antibacterial results demonstrated that the films with agarose mass concentrations ranging from 0% to 60% possessed antibacterial properties. These results indicate that these composite films, especially the composite film with an agarose mass concentration of 60%, exhibit excellent potential to be used in food packaging and biomedical materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...