Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 100: 103904, 2020 07.
Article in English | MEDLINE | ID: mdl-32413630

ABSTRACT

Phototriggered drug delivery systems (PTDDSs) facilitate controlled delivery of drugs loaded on photoactive platform to the target region under light stimulation. The present study investigated the synthesis and efficacy of carbazole-coumarin (CC)-fused heterocycles as a PTDDS platform for the photocontrolled release of a chemotherapeutic agent, chlorambucil, in an in vitro model of human breast and leukemia cancer cells. CC-fused heterocycles were constructed using 4-hydroxycarbazole as the starting material, and further modification of these heterocycles yielded two CC derivatives. CC-7 with an additional - COOH group and CC-8 with the triphenylphosphonium (TPP) group, a mitochondria-targeting ligand introduced in the carbazole ring, dissolved in polar solvents and exhibited emission bands at 360 and 450 nm, respectively. The results indicate that visible light of 405 nm triggers the photolysis of the CC-drug conjugate and efficiently delivers the drug in both in vitro cancer cell models. Cytotoxicity evaluation indicates the suppression of proliferation of both types of cells treated with CC-8 under synergy effect combining drug potency and photosensitization. Further, the lower IC50 of CC-8 toward leukemia cells suggests the efficacy of the TPP ligand in increasing the bioavailability of CC-drug conjugates in leukemia treatment. Studies on mitochondria-targeting drug delivery systems are required for improving the performance of anticancer drugs.


Subject(s)
Antineoplastic Agents/administration & dosage , Carbazoles/chemistry , Chlorambucil/administration & dosage , Coumarins/chemistry , Delayed-Action Preparations/chemistry , Leukemia/drug therapy , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Chlorambucil/pharmacokinetics , Chlorambucil/pharmacology , Drug Delivery Systems , Drug Liberation , Female , Humans , Light
2.
Colloids Surf B Biointerfaces ; 175: 428-435, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30562717

ABSTRACT

In this article, we demonstrate the self-assembly and photoresponive behavior of a novel coumarin-based amphiphilic dendron in both aqueous solution and air-water interface. The dendritic structure, namely C-IG1, was composed of a lipophilic cholesterol and hydrophilic poly(amido amine) (PAMAM) dendron, and the amphiphilic counterpart is interconnected by a photolabile coumarin carbonate ester, enabling the photoinduced degradation of the amphiphiles in protic solvents via SN1-like mechanism. A Nile red solubilization fluorescence assay suggests a low critical aggregation concentration for the micelle formation of C-IG1 in aqueous solutions (3.9 × 10-5 M); the Langmuir analysis further indicates that C-IG1 possesses significant compressibility in air-water interface, eventually forming homogeneous monolayers with a final molecular area (A0) of 36 Å2. Notably, the micelles and Langmuir monolayer are quite stable until photo-triggered dissociation based on the photocleavage of C-IG1 amphiphile activated by 365-nm incident light. Moreover, the transition in interfacial morphology of the Langmuir monolayer during the assembly and photodegradation processes also can be visually analyzed by incorporating Nile red probes with in situ monitoring through fluorescence microscopy. The thin film deposited on a glass substrate by the Langmuir-Blodgett technique also shows a photoresponsive behavior based on the change in the contact angles of a water droplet on the surface upon light stimulation. The binding affinity of C-IG1 and cyclic DNA determined by the fluorescence quenching analysis of the coumarin reporter suggests a ground-state macromolecular complexation process occurring through polyvalent interactions between the pseudodendrimers and biomacromolecules. The ethidium bromide displacement assay further indicates thus dendriplex formation at low nitrogen-to-phosphorous value (N/P < 1) and confirms that the decomplexation accompanied by DNA release can be achieved through an active phototriggered route under spatiotemporal control.


Subject(s)
Air , Coumarins/chemistry , DNA/metabolism , Dendrimers/chemistry , Photolysis , Water , DNA/chemistry , Fluorescence , Hydrophobic and Hydrophilic Interactions , Micelles , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...