Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 177: 108625, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823365

ABSTRACT

Liver segmentation is a fundamental prerequisite for the diagnosis and surgical planning of hepatocellular carcinoma. Traditionally, the liver contour is drawn manually by radiologists using a slice-by-slice method. However, this process is time-consuming and error-prone, depending on the radiologist's experience. In this paper, we propose a new end-to-end automatic liver segmentation framework, named ResTransUNet, which exploits the transformer's ability to capture global context for remote interactions and spatial relationships, as well as the excellent performance of the original U-Net architecture. The main contribution of this paper lies in proposing a novel fusion network that combines Unet and Transformer architectures. In the encoding structure, a dual-path approach is utilized, where features are extracted separately using both convolutional neural networks (CNNs) and Transformer networks. Additionally, an effective feature enhancement unit is designed to transfer the global features extracted by the Transformer network to the CNN for feature enhancement. This model aims to address the drawbacks of traditional Unet-based methods, such as feature loss during encoding and poor capture of global features. Moreover, it avoids the disadvantages of pure Transformer models, which suffer from large parameter sizes and high computational complexity. The experimental results on the LiTS2017 dataset demonstrate remarkable performance for our proposed model, with Dice coefficients, volumetric overlap error (VOE), and relative volume difference (RVD) values for liver segmentation reaching 0.9535, 0.0804, and -0.0007, respectively. Furthermore, to further validate the model's generalization capability, we conducted tests on the 3Dircadb, Chaos, and Sliver07 datasets. The experimental results demonstrate that the proposed method outperforms other closely related models with higher liver segmentation accuracy. In addition, significant improvements can be achieved by applying our method when handling liver segmentation with small and discontinuous liver regions, as well as blurred liver boundaries. The code is available at the website: https://github.com/Jouiry/ResTransUNet.


Subject(s)
Liver , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Liver/diagnostic imaging , Tomography, X-Ray Computed/methods , Liver Neoplasms/diagnostic imaging , Carcinoma, Hepatocellular/diagnostic imaging , Algorithms
2.
Comput Biol Med ; 158: 106838, 2023 05.
Article in English | MEDLINE | ID: mdl-37030263

ABSTRACT

Liver cancer is one of the leading causes of cancer-related deaths worldwide. Automatic liver and tumor segmentation are of great value in clinical practice as they can reduce surgeons' workload and increase the probability of success in surgery. Liver and tumor segmentation is a challenging task because of the different sizes, shapes, blurred boundaries of livers and lesions, and low-intensity contrast between organs within patients. To address the problem of fuzzy livers and small tumors, we propose a novel Residual Multi-scale Attention U-Net (RMAU-Net) for liver and tumor segmentation by introducing two modules, i.e., Res-SE-Block and MAB. The Res-SE-Block can mitigate the problem of gradient disappearance by residual connection and enhance the quality of representations by explicitly modeling the interdependencies and feature recalibration between the channels of features. The MAB can exploit rich multi-scale feature information and capture inter-channel and inter-spatial relationships of features simultaneously. In addition, a hybrid loss function, that combines focal loss and dice loss, is designed to improve segmentation accuracy and speed up convergence. We evaluated the proposed method on two publicly available datasets, i.e., LiTS and 3D-IRCADb. Our proposed method achieved better performance than the other state-of-the-art methods, with dice scores of 0.9552 and 0.9697 for LiTS and 3D-IRCABb liver segmentation, and dice scores of 0.7616 and 0.8307 for LiTS and 3D-IRCABb liver tumor segmentation.


Subject(s)
Liver Neoplasms , Surgeons , Humans , Liver Neoplasms/diagnostic imaging , Probability , Tomography, X-Ray Computed , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...