Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cerebellum ; 21(1): 101-115, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34052968

ABSTRACT

The objective of this study was to identify the decussating dentato-rubro-thalamic tract (d-DRTT) and its afferent and efferent connections in healthy humans using diffusion spectrum imaging (DSI) techniques. In the present study, the trajectory and lateralization of the d-DRTT was explored using data from subjects in the Massachusetts General Hospital-Human Connectome Project adult diffusion dataset. The afferent and efferent networks that compose the cerebello-thalamo-cerebral pathways were also reconstructed. Correlation analysis was performed to identify interrelationships between subdivisions of the cerebello-dentato-rubro-thalamic and thalamo-cerebral connections. The d-DRTT was visualized bilaterally in 28 subjects. According to a normalized quantitative anisotropy and lateralization index evaluation, the left and right d-DRTT were relatively symmetric. Afferent regions were found mainly in the posterior cerebellum, especially the entire lobule VII (crus I, II and VIIb). Efferent fibers mainly are projected to the contralateral frontal cortex, including the motor and nonmotor regions. Correlations between cerebello-thalamic connections and thalamo-cerebral connections were positive, including the lobule VIIa (crus I and II) to the medial prefrontal cortex (MPFC) and the dorsolateral prefrontal cortex and lobules VI, VIIb, VIII, and IX, to the MPFC and motor and premotor areas. These results provide DSI-based tratographic evidence showing segregated and parallel cerebellar outputs to cerebral regions. The posterior cerebellum may play an important role in supporting and handling cognitive activities through d-DRTT. Future studies will allow for a more comprehensive understanding of cerebello-cerebral connections.


Subject(s)
Motor Cortex , Thalamus , Adult , Cerebellum/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Humans , Neural Pathways/diagnostic imaging , Thalamus/diagnostic imaging
2.
Ther Adv Neurol Disord ; 13: 1756286420928657, 2020.
Article in English | MEDLINE | ID: mdl-32565913

ABSTRACT

BACKGROUND: Introducing multiple different stereoelectroencephalography electrodes in a three-dimensional (3D) network to create a 3D-lesioning field or stereo-crossed radiofrequency thermocoagulation (scRF-TC) might create larger lesioning size; however, this has not been quantified to date. This study aimed to quantify the configurations essential for scRF-TC. METHODS: By using polyacrylamide gel (PAG), we investigated the effect of electrode conformation (angled/parallel/multiple edges) and electrode distance of creating an electrode network. Volume, time, and temperature were analyzed quantitatively with magnetic resonance imaging, video analysis, and machine learning. A network of electrodes to the pathological left area 47 was created in a patient; the seizure outcome and coverage range were further observed. RESULTS: After the compatibility test between the PAG and brain tissue, the sufficient distance of contacts (from different electrodes) for confluent lesioning was 7 mm with the PAG. Connection to the lesioning field could be achieved even with a different arrangement of electrodes. One contact could achieve at least six connections with different peripheral contacts. Coagulation with a network of electrodes can create more significant lesioning sizes, 1.81-2.12 times those of the classic approaches. The confluent lesioning field created by scRF-TC had a volume of 38.7 cm3; the low metabolic area was adequately covered. The representative patient was free of seizures throughout the 12-month follow up. CONCLUSION: Lesioning with electrodes in a network manner is practical for adequate 3D coverage. A secondary craniotomy could be potentially prevented by combining both monitoring and a large volume of lesions.

SELECTION OF CITATIONS
SEARCH DETAIL
...