Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 37(6): 957-967, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38771128

ABSTRACT

Lung cancer is the main cause of cancer deaths around the world. Nitrosamine 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen of lung cancer. Abundant evidence implicates long noncoding RNAs (lncRNAs) in tumorigenesis. Yet, the effects and mechanisms of lncRNAs in NNK-induced carcinogenesis are still unclear. In this study, we discovered that NNK-induced transformed Beas-2B cells (Beas-2B-NNK) showed increased cell migration and proliferation while decreasing rates of apoptosis. RNA sequencing and differentially expressed lncRNAs analyses showed that lncRNA PSMB8-AS1 was obviously upregulated. Interestingly, silencing the lncRNA PSMB8-AS1 in Beas-2B-NNK cells reduced cell proliferation and migration and produced cell cycle arrest in the G2/M phase along with a decrease in CDK1 expression. Conclusively, our results demonstrate that lncRNA PSMB8-AS1 could promote the malignant characteristics of Beas-2B-NNK cells by regulating CDK1 and affecting the cell cycle, suggesting that it may supply a new prospective epigenetic mechanism for lung cancer.


Subject(s)
Bronchi , Carcinogens , Cell Cycle , Cell Proliferation , Epithelial Cells , Nicotiana , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Bronchi/cytology , Bronchi/pathology , Bronchi/drug effects , Cell Proliferation/drug effects , Nicotiana/adverse effects , Cell Cycle/drug effects , Carcinogens/toxicity , Nitrosamines/toxicity , Cell Line , Cell Movement/drug effects
2.
Chemosphere ; 344: 140358, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37797900

ABSTRACT

Particulate matter (PM), one of the most serious air contaminants, could easily pass through the airway and deposit at the deep alveoli. Thus, it might trigger respiratory diseases like inflammation, asthma and lung cancer on human. Long non-coding RNAs (lncRNAs) are considered as important regulator in promotion and progression of diverse cancers. However, the molecular mechanism of lncRNAs mediating PM-induced lung carcinogenesis remains unclear. In this study, we established a 16HBE malignant transformed cell induced by PM (Cells were treated with 20 µg/ml PM, which named PM-T cells) and explored the roles and mechanisms of lncRNAs in the malignant transformation induced by PM. Compared with 16HBE cells, various biological functions were changed in PM-T cells, such as cell proliferation, migration, cell cycle and apoptosis. LncRNA SPRY4-IT1 was significant down-regulated expression and associated with these biological effects. Our results showed that lncRNA SPRY4-IT1 overexpression reversed these functional changes mentioned above. The further studies indicated that lncRNA SPRY4-IT1 involved in PM-induced cell transformation by modulating Chk1 expression via negative regulation of DUSP6-ERK1/2. In conclusion, our studies suggested that lncRNA SPRY4-IT1 played the role as a tumor suppressor gene and might mediate 16HBE cells malignant transformation induced by PM through regulating DUSP6-ERK1/2-Chk1 signaling pathway.


Subject(s)
RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , MAP Kinase Signaling System , Gene Expression Regulation, Neoplastic , Signal Transduction , Cell Proliferation/genetics , Cell Movement , Dual Specificity Phosphatase 6/genetics , Dual Specificity Phosphatase 6/metabolism
3.
BMC Pediatr ; 23(1): 304, 2023 06 17.
Article in English | MEDLINE | ID: mdl-37330491

ABSTRACT

BACKGROUND: Bronchopulmonary dysplasia (BPD) is the most common chronic pulmonary disease in premature infants. Blood proteins may be early predictors of the development of this disease. METHODS: In this study, protein expression profiles (blood samples during their first week of life) and clinical data of the GSE121097 was downloaded from the Gene Expression Omnibus. Weighted gene co-expression network analysis (WGCNA) and differential protein analysis were carried out for variable dimensionality reduction and feature selection. Least absolute shrinkage and selection operator (LASSO) were conducted for BPD prediction model development. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve, calibration curve, and decision curve. RESULTS: The results showed that black module, magenta module and turquoise module, which included 270 proteins, were significantly correlated with the occurrence of BPD. 59 proteins overlapped between differential analysis results and above three modules. These proteins were significantly enriched in 253 GO terms and 11 KEGG signaling pathways. Then, 59 proteins were reduced to 8 proteins by LASSO analysis in the training cohort. The proteins model showed good BPD predictive performance, with an AUC of 1.00 (95% CI 0.99-1.00) and 0.96 (95% CI 0.90-1.00) in training cohort and test cohort, respectively. CONCLUSION: Our study established a reliable blood-protein based model for early prediction of BPD in premature infants. This may help elucidate pathways to target in lessening the burden or severity of BPD.


Subject(s)
Bronchopulmonary Dysplasia , Infant, Newborn , Infant , Humans , Bronchopulmonary Dysplasia/diagnosis , Bronchopulmonary Dysplasia/genetics , Gestational Age , Infant, Premature , Blood Proteins/genetics , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...