Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Colloid Interface Sci ; 672: 486-496, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38852351

ABSTRACT

The instability in the structural integrity caused by interfacial issues is commonly regarded as the primary drawback of Ni-rich layered cathode materials (LiNixCoyMn1-x-yO2, where x  ≥ 0.8), which must be addressed before their commercial application. Herein, a novel multiple-function surface modification strategy is proposed based on the single crystal structure to in-situ achieve the construction of a coating layer and surface doping with Ce element to enhance the structural stability of the LiNi0.88Co0.09Mn0.03O2 (NCM). Notably, the introduction of Ce-O bonding adjusts the local oxygen coordination to achieve a more stabilized structure of the oxygen framework, which inhibits the evolution of lattice oxygen and enhances conductivity. Additionally, by benefiting from the in-situ synthesized coating layer of LixCeO2, the occurrence of side reactions on the surface is effectively alleviated, resulting in a reduction in electrode polarization. Combined with comprehensive electrochemical tests, it is confirmed that the improved electrochemical performance originates from the reduction of the detrimental H2-H3 phase transition and enhanced conductivity. As expected, the modified material with 1 wt% content of Ce (NCM@Ce) exhibits a high initial discharge capacity of 196.3 mAh g-1 with a capacity retention of 79.7 % after 200 cycles, and its energy density reaches 574.3 Wh kg-1 after 200 cycles.

2.
Nat Commun ; 15(1): 2033, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448427

ABSTRACT

Constraining the electrochemical reactivity of free solvent molecules is pivotal for developing high-voltage lithium metal batteries, especially for ether solvents with high Li metal compatibility but low oxidation stability ( <4.0 V vs Li+/Li). The typical high concentration electrolyte approach relies on nearly saturated Li+ coordination to ether molecules, which is confronted with severe side reactions under high voltages ( >4.4 V) and extensive exothermic reactions between Li metal and reactive anions. Herein, we propose a molecular anchoring approach to restrict the interfacial reactivity of free ether solvents in diluted electrolytes. The hydrogen-bonding interactions from the anchoring solvent effectively suppress excessive ether side reactions and enhances the stability of nickel rich cathodes at 4.7 V, despite the extremely low Li+/ether molar ratio (1:9) and the absence of typical anion-derived interphase. Furthermore, the exothermic processes under thermal abuse conditions are mitigated due to the reduced reactivity of anions, which effectively postpones the battery thermal runaway.

3.
ACS Nano ; 18(11): 8002-8016, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38451853

ABSTRACT

Single-crystal Ni-rich cathodes offer promising prospects in mitigating intergranular microcracks and side reaction issues commonly encountered in conventional polycrystalline cathodes. However, the utilization of micrometer-sized single-crystal particles has raised concerns about sluggish Li+ diffusion kinetics and unfavorable structural degradation, particularly in high Ni content cathodes. Herein, we present an innovative in situ doping strategy to regulate the dominant growth of characteristic planes in the single-crystal precursor, leading to enhanced mechanical properties and effectively tackling the challenges posed by ultrahigh-nickel layered cathodes. Compared with the traditional dry-doping method, our in situ doping approach possesses a more homogeneous and consistent modifying effect from the inside out, ensuring the uniform distribution of doping ions with large radius (Nb, Zr, W, etc). This mitigates the generally unsatisfactory substitution effect, thereby minimizing undesirable coating layers induced by different solubilities during the calcination process. Additionally, the uniformly dispersed ions from this in situ doping are beneficial for alleviating the two-phase coexistence of H2/H3 and optimizing the Li+ concentration gradient during cycling, thus inhibiting the formation of intragranular cracks and interfacial deterioration. Consequently, the in situ doped cathodes demonstrate exceptional cycle retention and rate performance under various harsh testing conditions. Our optimized in situ doping strategy not only expands the application prospects of elemental doping but also offers a promising research direction for developing high-energy-density single-crystal cathodes with extended lifetime.

4.
Angew Chem Int Ed Engl ; 63(15): e202401779, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38363076

ABSTRACT

The Li3MX6 compounds (M=Sc, Y, In; X=Cl, Br) are known as promising ionic conductors due to their compatibility with typical metal oxide cathode materials. In this study, we have successfully synthesized γ-Li3ScCl6 using high pressure for the first time in this family. Structural analysis revealed that the high-pressure polymorph crystallizes in the polar and chiral space group P63mc with hexagonal close-packing (hcp) of anions, unlike the ambient-pressure α-Li3ScCl6 and its spinel analog with cubic closed packing (ccp) of anions. Investigation of the known Li3MX6 family further revealed that the cation/anion radius ratio, rM/rX, is the factor that determines which anion sublattice is formed and that in γ-Li3ScCl6, the difference in compressibility between Sc and Cl exceeds the ccp rM/rX threshold under pressure, enabling the ccp-to-hcp conversion. Electrochemical tests of γ-Li3ScCl6 demonstrate improved electrochemical reduction stability. These findings open up new avenues and design principles for lithium solid electrolytes, enabling routes for materials exploration and tuning electrochemical stability without compositional changes or the use of coatings.

5.
Small ; : e2309685, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238155

ABSTRACT

As a mainstream technology for recycling spent lithium-ion batteries, direct regeneration is rapidly developed due to its high efficiency and green characteristics. However, efficient reuse of spent LiNix Coy Mn1- x - y O2 cathode is still a significant challenge, as the rock salt/spinel phase on the surface hinders the Li replenishment and phase transformation to the layered structure. In this work, the fundamental understanding of the repair mechanism is confirmed that the oxidizing atmosphere is the crucial factor that can greatly improve the rate and degree of phase restoration. Particularly, a ternary-component molten salt system (LiOH-Li2 CO3 -LiNO3 ) is proposed for direct regeneration of LiNi0.5 Co0.2 Mn0.3 O2 (NCM523), which can in situ generate the strong oxidizing intermediate of superoxide radicals. Additionally, it shows a liquid-like reaction environment at a lower temperature to acceclerate the transport rate of superoxide-ions. Therefore, the synergistic effect of LiOH-Li2 CO3 -LiNO3 system can strengthen the full restoration of rock salt/spinel phases and achieve the complete Li-supplement. As anticipated, the regenerated NCM523 delivers a high cycling stability with a retention of 91.7% after 100 cycles, which is even competitive with the commercial NCM523. This strategy provides a facile approach for the complete recovery of layer structure cathode, demonstrating a unique perspective for the direct regeneration of spent lithium-ion batteries.

6.
ACS Nano ; 18(3): 2250-2260, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38180905

ABSTRACT

Lithium metal batteries (LMBs) offer significant advantages in energy density and output voltage, but they are severely limited by uncontrollable Li dendrite formation resulting from uneven Li+ behaviors and high reactivity with potential co-solvent plating. Herein, to uniformly enhance the Li behaviors in desolvation and diffusion, the local Li+ solvation shell structure is optimized by constructing an anion-braking separator, hence dynamically reducing the self-amplifying behavior of dendrites. As a prototypal, two-dimensional lithiated-montmorillonite (LiMMT) is blade-coated on the commercial separator, where abundant -OH groups as Lewis acidic sites and electron acceptors could selectively adsorb corresponding FSI- anions, regulating the solvation shell structure and restricting their migration. Meanwhile, the weakened anion mobility delays the time of breaking electrical neutrality, and the Li nucleation density is quantified through the respective experimental, theoretical and spectroscopical results, providing a comprehensive understanding of modifying anion and cation behaviors on dendritic growth suppression. As anticipated, a long Li plating/stripping lifespan up to 1800 h and a significantly increased average Coulombic efficiency of 98.8% are achieved under 3.0 mAh cm-2. The fabricated high-loading Li-LFP or Li-NCM523 full-cells display the cycle durability with enhanced capacity retention of nearly 100%, providing the instructive guide towards realizing dendrite-free LMBs.

7.
Article in English | MEDLINE | ID: mdl-37874868

ABSTRACT

Layered cathode materials for sodium-ion batteries (SIBs) have gained considerable attention as promising candidates owing to their high capacity and potential for industrial scalability. Nonetheless, challenges arise from stress and structural degradation resulting from the deposition of larger ion radius species, leading to diminished cyclic stability and rate performance. In this study, we present a novel and straightforward strategy that combines the synergistic effects of an amorphous aluminum oxide coating and aluminum ion doping. This approach effectively addresses the issues of grain cracking and expands the interlayer spacing of alkali metal ions in SIB materials, thereby enhancing their overall performance. Consequently, it optimizes the diffusion of charge carriers and facilitates interfacial charge transfer, leading to remarkable improvements in the performance of the NaNi0.33Mn0.33Fe0.33O2 material with 0.4 wt % amorphous aluminum oxide coating (NNMF-0.4A), which exhibits reversible capacities of 135.7, 114.3, 106.8, 99.9, 89.5, and 77.1 mAh g-1 at 0.1, 0.5, 1, 2, 5, and 10 C, respectively. Furthermore, the NNMF-0.4A material maintains a capacity of 76.7 mA g-1 after 500 cycles at a current density of 800 mA g-1 (10 C), with a capacity retention rate of 98.2%. Our findings present a groundbreaking pathway for modifying high-power sodium-ion battery cathode materials, contributing to the advancement of sustainable energy storage technologies.

8.
Waste Manag ; 171: 292-302, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37696171

ABSTRACT

Currently, the recycling of spent lithium-ion batteries (LIBs) has mainly been focused on the extraction of precious metals, such as lithium, cobalt and nickel from cathodes, while the waste graphite anode has been overlooked due to its low-cost production and abundant resources reserve. However, there are enormous potential value and pollution risk in the view of graphite recycling. Thus, we propose an original method to prepare expanded graphite (EG) as new anode material generated from waste graphite in LIBs which integrates the oxidation and purification in one-step. By regulating the oxidizability of potassium hypermanganate in the sulfur-phosphorus mixed acid system, the expansion of graphite and removal of impurities are realized simultaneously and thoroughly. As anticipated, the shortening of preparation process and purification procedure can also reduce the generation of polluting substances and production cost. It displays excellent electrochemical performance (reversible capacity of 435.8 mAh·g-1 at 0.1C and long-term cycling property of 370 mAh·g-1 at 1C after 1000 cycles), which is even higher than that of pristine commercial graphite. This delicate strategy of high-performance expanded graphite recycling achieves the integration of purification and value-added processes, providing the instructive guide to regenerate industrial-grade anode materials for the increasing LIBs demand in the future.

9.
Chem Commun (Camb) ; 59(51): 7935-7938, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37272911

ABSTRACT

We report the improved kinetic mechanism of a nickel-rich LiNi0.84Mn0.10Co0.03Al0.03O2 cathode. The important role of Co/Al in inhibiting cation disorder to increase the lithium ion diffusion rate is revealed. Impressively, it retains an excellent capacity retention of 76.8% after 200 cycles under the high-rate condition (5C).


Subject(s)
Aluminum , Cobalt , Kinetics , Electrodes , Diffusion
10.
J Pediatr Nurs ; 72: 9-15, 2023.
Article in English | MEDLINE | ID: mdl-37030043

ABSTRACT

PURPOSE: Emergence agitation is a common postoperative complication during recovery in children. The purpose of this study is to explore whether the use of ice popsicle could prevent emergence agitation in children undergoing oral surgery with sevoflurane anaesthesia. DESIGN AND METHODS: In this prospective randomized controlled study, 100 children undergoing oral surgery were randomly assigned to Group 1 which received ice popsicle after emergence (intervention, n = 50) or Group 2 which received verbal encouragement from their parents (control, n = 50). The primary outcome was the 2-hour postoperative incidence of EA. RESULTS: Group 1 had a significant lower incidence of emergence agitation (22% vs 58%, P < 0.001) compared with Group 2. The mean agitation score was significantly lower in Group 1 vs Group 2 at 10  minutes (1.64 vs 2.12, P = 0.024) and 20 min (1.60 vs 2.14, P = 0.004) after emergence. The peak agitation and pain scores were significantly lower in Group 1 than in Group 2 (P < 0.001). CONCLUSIONS: Findings from this study suggest that ice popsicle is an effective, cheap, pleasurable, and easily administered method for alleviating emergence agitation in paediatric patients after oral surgery under general anaesthesia. These results are worthy of confirmation in other surgeries. PRACTICE IMPLICATIONS: This approach is highly accepted by both children and their parents, and our findings support the effectiveness of ice popsicle in relieving emergence agitation and pain after oral surgery in children. CLINICAL TRIALS REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1800015634.


Subject(s)
Anesthetics, Inhalation , Emergence Delirium , Methyl Ethers , Oral Surgical Procedures , Child , Humans , Sevoflurane , Ice , Prospective Studies , Anesthesia, General , Pain
11.
Front Nutr ; 10: 1116982, 2023.
Article in English | MEDLINE | ID: mdl-36908923

ABSTRACT

Bacillus subtilis has been extensively studied for its ability to inhibit the growth of harmful microorganisms and its high protease activity. In this study, Bacillus subtilis was used to ferment gluten and assess the effects of the fermentation process on the physicochemical, microstructure and antioxidant properties of gluten. The results of Fourier infrared spectroscopy (FT-IR) and circular chromatography (CD) showed a significant decrease in the content of α-helix structures and a significant increase in the content of ß-sheet structures in gluten after fermentation (p < 0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that glutenin was degraded into small molecular peptides with a molecular weight of less than 26 kDa after 24 h of fermentation; meanwhile, the fermentation process significantly increased the free amino acid content of the samples (p < 0.05), reaching 1923.38 µg/mL at 120 h of fermentation, which was 39.46 times higher than that at 24 h of fermentation (p < 0.05). In addition, the fermented back gluten has higher free radical scavenging activity and iron reduction capacity. Therefore, fermented gluten may be used as a functional food to alleviate oxidative stress. This study provides a reference for the high-value application of gluten.

12.
J Colloid Interface Sci ; 638: 606-615, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36774874

ABSTRACT

Though numerous framework structures have been constructed to strengthen the reaction kinetics and durability, the inevitable generation of polysulfide dissolution during conversion-process can cause irreparable destruction to ion-channel and crystal structure integrality, which has become a huge obstacle to the application of metal-sulfide in potassium-ion batteries. Herein, the quantum dot structure with catalytic conversion capability is synchronously introduced into the design of FeS2 anode materials to heighten its K+-storage performance. The constructed quantum dot structure anchored by the graphene with space-confinement effect can shorten the ion diffusion path and enlarge the active area, thus accelerating the K+-ions transmission kinetics and absorption action, respectively. The intermediate phase of formed Fe-nanoclusters possesses high-active catalysis ability, which can effectively suppress the polysulfide shuttle combined with the enhanced absorption effect, fully guaranteeing the structure stability and cycling reversibility. Predictably, the fabricated quantum dot FeS2 can express a prominent advantage in rapid potassiation/depotassiation processes (518.1 mAh g-1, 10 A g-1) and a superior cycling lifespan with gratifying reversible capacity at superhigh rate (177.7 mAh g-1, 9000 cycles, 5 A g-1). Therefore, engineering quantum dot structure with self-induced catalysis action for detrimental polysulfide is an achievable strategy to implement high-performance sulfide anode materials for K-ions accommodation.

13.
J Colloid Interface Sci ; 629(Pt A): 388-398, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36087554

ABSTRACT

As a promising high energy density cathode, single-crystal Ni-rich cathode face poor diffusion dynamics, which leads to poor structural evolution, poor cyclic stability and unfavorable rate performance, thus impeding its wider application. Herein, the strategy of synergistic surface modification by ionic conductor coating and trace element doping is delicately designed. The surface protective Li3BO3 layer is wrapped on the single-crystal LiNi0.83Co0.11Mn0.06O2 (NCM83), which can improve the compatibility of cathode/electrolyte with reduced interface resistance. While Zr is incorporated into bulk to stabilize the crystal structure and migration channel. This synergistic strategy achieves the improvement of ionic transport and structural stability of single-crystal NCM83 (Zr-NCM83@B) from the outer surface to the inner body. As expected, the modified cathode Zr-NCM83@B demonstrates a satisfying electrochemical performance. It delivers a high reversible capacity of 169 mAh g-1 in coin-type half-cell at 4C within 3.0-4.3 V. Remarkably, it displays excellent capacity retention of 83.5 % in Zr-NCM83@B || graphite pouch-type full-cell over 1400 cycles at 1C with high voltage range of 2.8-4.4 V. This synergistic surface modification provides a reference for commercial development of advanced single-crystal Ni-rich cathode under harsh testing conditions.

14.
Chem Commun (Camb) ; 58(53): 7372-7375, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35686964

ABSTRACT

Graphite with an activated edge is carefully designed via a controllable solution treatment and sintering process. The simultaneous existence of extra active sites and expanded layers at the edge enable it to exhibit excellent fast-charging performance in a half-cell and full-cell set-up. This work highlights an overall understanding of polarization and the optimum structure for a fast-charging anode.

15.
Small ; 18(26): e2202134, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35638480

ABSTRACT

2D layered Sn-based materials have attracted enormous attention due to their remarkable performance in sodium-ion batteries. Nevertheless, this promising candidate involves a complex Na+ -storage process with multistep conversion-alloying reactions, which induces the uneven dispersion of heterogeneous intermediate accompanied by severe agglomeration of metallic Sn0 , inescapably resulting in poor reaction reversibility with sluggish rate capability and inferior cyclic lifespan. Herein, a delicately layered heterostructure SnSSe/C consisting of defect-rich SnSSe and graphene is designed and successfully achieved via a facile hydrothermal process. The equal anionic substitution of Se in SnSSe crystal can trigger numerous defects, which can not only facilitate Na+ diffusion but also accelerate the nucleation process by inducing quantum-dot-level uniform distribution of heterogeneous intermediates, Na2 Se/Na2 S and Sn0 . Concurrently, in situ formed uniform Na2 Se/Na2 S grain boundaries confined by this unique layered heterostructure may effectively suppress the agglomeration of metallic Sn0 nanograins and boost the reversibility of conversion-alloying reaction. As a result, the SnSSe/C displays significant improvement in Na-storage performance, in terms of remarkable rate capability and ultralong cycling lifespan. This work, focusing on controlling intermediate distribution, provides an effective strategy to boost reaction reversibility, which can be wildly employed in conversion-based electrodes for energy storage regions.

16.
Nat Commun ; 13(1): 2319, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35484128

ABSTRACT

High-capacity Ni-rich layered oxides are promising cathode materials for secondary lithium-based battery systems. However, their structural instability detrimentally affects the battery performance during cell cycling. Here, we report an Al/Zr co-doped single-crystalline LiNi0.88Co0.09Mn0.03O2 (SNCM) cathode material to circumvent the instability issue. We found that soluble Al ions are adequately incorporated in the SNCM lattice while the less soluble Zr ions are prone to aggregate in the outer SNCM surface layer. The synergistic effect of Al/Zr co-doping in SNCM lattice improve the Li-ion mobility, relief the internal strain, and suppress the Li/Ni cation mixing upon cycling at high cut-off voltage. These features improve the cathode rate capability and structural stabilization during prolonged cell cycling. In particular, the Zr-rich surface enables the formation of stable cathode-electrolyte interphase, which prevent SNCM from unwanted reactions with the non-aqueous fluorinated liquid electrolyte solution and avoid Ni dissolution. To prove the practical application of the Al/Zr co-doped SNCM, we assembled a 10.8 Ah pouch cell (using a 100 µm thick Li metal anode) capable of delivering initial specific energy of 504.5 Wh kg-1 at 0.1 C and 25 °C.

17.
Ann Transl Med ; 10(2): 87, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35282084

ABSTRACT

Background: To explore the effect of adhesive surface with porcelain sintering and different silane coupling agents on adhesive properties of zirconia ceramics. Methods: Zirconia blocks (n=72) were randomly divided into two large groups (n=36) according to whether the adhesive surface was treated with sintered porcelain: N (no porcelain sintering), P (porcelain sintering). Then, according to different silane coupling agents, each group was randomly divided into three small groups, six small groups in total (n=12): NN (no porcelain sintering and agent), NM (no porcelain sintering + Monobond-S), NC (no porcelain sintering + Clearfil Repair); PN (porcelain sintering + no agent), PM (porcelain sintering + Monobond-S), PC (porcelain sintering + Clearfil Repair). After surface treatment, RelyX Unicem Cement was used to make ceramic-resin bonding specimens. Then, each of the six small groups was randomly divided into two subgroups; shear bond strength (SBS) was tested and bond failure mode was analyzed before and after thermal cycling 5,000 times. Results: (I) SBS analysis: the SBS values of the P groups were significantly higher than those of the N groups (P<0.05). The groups treated with silane coupling agents showed higher SBS values than the control group (P<0.05), and the PC groups showed the highest SBS values (P<0.05). The SBS of each group was significantly decreased after thermal cycling (P<0.05). (II) The microcharacteristics under scanning electron microscopy and energy spectrum analysis: the ceramic blocks being treated by porcelain sintering showed more roughness than the control group. A large amount of silicon (Si) appeared on the surface of the ceramic blocks after porcelain sintering. Conclusions: (I) Treating the adhesive surface by porcelain sintering can improve the bonding strength between zirconia and RelyX Unicem Cement, and the effect was better in conjunction with silane coupling agent. (II) The two kinds of silane coupling agent (Monobond-S, Clearfil Repair) can improve the bonding strength between zirconia and resin cement. The effect of Clearfil Repair is better than that of Monobond-S. (III) Thermal cycling had a significant adverse effect on SBS between zirconia and RelyX Unicem Cement. Clearfil Repair is helpful in improving the durability of zirconia bonding strength.

18.
Chem Commun (Camb) ; 58(22): 3625-3628, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35201248

ABSTRACT

We report the FeVOx porous nanorods on carbon cloth as a novel cathode material for flexible aqueous energy storage. It exhibits excellent electrochemical properties and cycling stability in supercapacitors and zinc-ion batteries. Moreover, this work makes significant progress for developing high-performance electrodes and provides a foundation for future research.

19.
Small ; 18(14): e2107357, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35182015

ABSTRACT

Lithium-ion batteries based on single-crystal LiNi1- x - y Cox Mny O2 (NCM, 1-x-y ≥ 0.6) cathode materials are gaining increasing attention due to their improved structural stability resulting in superior cycle life compared to batteries based on polycrystalline NCM. However, an in-depth understanding of the less pronounced degradation mechanism of single-crystal NCM is still lacking. Here, a detailed postmortem study is presented, comparing pouch cells with single-crystal versus polycrystalline LiNi0.60 Co0.20 Mn0.20 O2 (NCM622) cathodes after 1375 dis-/charge cycles against graphite anodes. The thickness of the cation-disordered layer forming in the near-surface region of the cathode particles does not differ significantly between single-crystal and polycrystalline particles, while cracking is pronounced for polycrystalline particles, but practically absent for single-crystal particles. Transition metal dissolution as quantified by time-of-flight mass spectrometry on the surface of the cycled graphite anode is much reduced for single-crystal NCM622. Similarly, CO2 gas evolution during the first two cycles as quantified by electrochemical mass spectrometry is much reduced for single-crystal NCM622. Benefitting from these advantages, graphite/single-crystal NMC622 pouch cells are demonstrated with a cathode areal capacity of 6 mAh cm-2 with an excellent capacity retention of 83% after 3000 cycles to 4.2 V, emphasizing the potential of single-crystalline NCM622 as cathode material for next-generation lithium-ion batteries.

20.
Nat Commun ; 12(1): 5320, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34493735

ABSTRACT

High nickel content in LiNixCoyMnzO2 (NCM, x ≥ 0.8, x + y + z = 1) layered cathode material allows high specific energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM cathodes suffer from performance degradation, mechanical and structural instability upon prolonged cell cycling. Although the use of single-crystal Ni-rich NCM can mitigate these drawbacks, the ion-diffusion in large single-crystal particles hamper its rate capability. Herein, we report a strategy to construct an in situ Li1.4Y0.4Ti1.6(PO4)3 (LYTP) ion/electron conductive network which interconnects single-crystal LiNi0.88Co0.09Mn0.03O2 (SC-NCM88) particles. The LYTP network facilitates the lithium-ion transport between SC-NCM88 particles, mitigates mechanical instability and prevents detrimental crystalline phase transformation. When used in combination with a Li metal anode, the LYTP-containing SC-NCM88-based cathode enables a coin cell capacity of 130 mAh g-1 after 500 cycles at 5 C rate in the 2.75-4.4 V range at 25 °C. Tests in Li-ion pouch cell configuration (i.e., graphite used as negative electrode active material) demonstrate capacity retention of 85% after 1000 cycles at 0.5 C in the 2.75-4.4 V range at 25 °C for the LYTP-containing SC-NCM88-based positive electrode.

SELECTION OF CITATIONS
SEARCH DETAIL
...