Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 23(6): 2473-86, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24815618

ABSTRACT

In this paper, we investigate the impact of spatial, temporal, and amplitude resolution on the perceptual quality of a compressed video. Subjective quality tests were carried out on a mobile device and a total of 189 processed video sequences with 10 source sequences included in the test. Subjective data reveal that the impact of spatial resolution (SR), temporal resolution (TR), and quantization stepsize (QS) can each be captured by a function with a single content-dependent parameter, which indicates the decay rate of the quality with each resolution factor. The joint impact of SR, TR, and QS can be accurately modeled by the product of these three functions with only three parameters. The impact of SR and QS on the quality are independent of that of TR, but there are significant interactions between SR and QS. Furthermore, the model parameters can be predicted accurately from a few content features derived from the original video. The proposed model correlates well with the subjective ratings with a Pearson correlation coefficient of 0.985 when the model parameters are predicted from content features. The quality model is further validated on six other subjective rating data sets with very high accuracy and outperforms several well-known quality models.

2.
Ultrasound Med Biol ; 31(12): 1647-64, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16344127

ABSTRACT

Segmentation of multiple objects with irregular contours and surrounding sporadic spots is a common practice in ultrasound image analysis. A new region-based approach, called cell-competition algorithm, is proposed for simultaneous segmentation of multiple objects in a sonogram. The algorithm is composed of two essential ideas. One is simultaneous cell-based deformation of regions and the other is cell competition. The cells are generated by two-pass watershed transformations. The cell-competition algorithm has been validated with 13 synthetic images of different contrast-to-noise ratios and 71 breast sonograms. Three assessments have been carried out and the results show that the boundaries derived by the cell-competition algorithm are reasonably comparable to those delineated manually. Moreover, the cell-competition algorithm is robust to the variation of regions-of-interest and a range of thresholds required for the second-pass watershed transformation. The proposed algorithm is also shown to be superior to the region-competition algorithm for both types of images.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted , Ultrasonography/methods , Breast Diseases/diagnosis , Female , Humans , Ultrasonography, Mammary/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...