Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 287: 109887, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925877

ABSTRACT

N6-methyladenosine (m6A), the most common modification in mammalian mRNA and viral RNA, regulates mRNA structure, stability, translation, and nuclear export. The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus causing severe neurologic disease in humans. To date, the role of m6A modification in JEV infection remains unclear. Herein, we aimed to determine the impact of m6A methylation modification on JEV replication in vitro and in vivo. Our results demonstrated that the overexpression of the m6A reader protein YTHDF1 in vitro significantly inhibits JEV proliferation. Additionally, YTHDF1 negatively regulates JEV proliferation in YTHDF1 knockdown cells and YTHDF1 knockout mice. MeRIP-seq analysis indicated that YTHDF1 interacts with several interferon-stimulated genes (ISGs), especially in IFIT3. Overall, our data showed that YTHDF1 played a vital role in inhibiting JEV replication. These findings bring novel insights into the specific mechanisms involved in the innate immune response to infection with JEV. They can be used in the development of novel therapeutics for controlling JEV infection.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Humans , Mice , Animals , Encephalitis Virus, Japanese/genetics , Host-Pathogen Interactions , Encephalitis, Japanese/veterinary , Cell Line , RNA, Messenger , Virus Replication , Mammals , RNA-Binding Proteins/genetics
2.
Arch Pharm Res ; 45(4): 280-293, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35441964

ABSTRACT

Zika virus (ZIKV), an arbovirus of the Flaviviridae family, has emerged as a significant public health concern owing to its association with congenital abnormalities and severe neurological sequelae. Thus, there is an urgent need to develop effective therapeutic approaches to efficiently treat ZIKV infections. This study used phenotypic screening to identify a series of 1,2,4-oxadiazole derivatives that possess antiviral activity against ZIKV infection. Subsequently, 28 new derivatives were designed, synthesized, and evaluated for this purpose. Among these compounds, 4-(5-phenyl-1,2,4-oxadiazol-3-yl)-N-(pyridin-3-ylmethyl)aniline (5d) had potent antiviral activity against ZIKV infections. Furthermore, a structure-activity relationship analysis indicated that a benzyl substitution on the aniline nitrogen of this compound improved potency while augmenting its drug-like properties. In addition, 5d exhibited antiviral activity against various viruses of Flaviviridae family of worldwide public health importance, such as dengue, Japanese encephalitis and classical swine fever viruses, indicating its potential as a lead compound for generating 1,2,4-oxadiazole derivatives with broad-spectrum anti-flaviviral properties.


Subject(s)
Classical Swine Fever Virus , Dengue , Encephalitis, Japanese , Zika Virus Infection , Zika Virus , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dengue/drug therapy , Encephalitis, Japanese/drug therapy , Humans , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Virus Replication , Zika Virus Infection/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...